#ifdef XEN #include #include #include #include #endif /* * arch/ia64/kernel/ivt.S * * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co * Stephane Eranian * David Mosberger * Copyright (C) 2000, 2002-2003 Intel Co * Asit Mallick * Suresh Siddha * Kenneth Chen * Fenghua Yu * * 00/08/23 Asit Mallick TLB handling for SMP * 00/12/20 David Mosberger-Tang DTLB/ITLB handler now * uses virtual PT. */ /* * This file defines the interruption vector table used by the CPU. * It does not include one entry per possible cause of interruption. * * The first 20 entries of the table contain 64 bundles each while the * remaining 48 entries contain only 16 bundles each. * * The 64 bundles are used to allow inlining the whole handler for critical * interruptions like TLB misses. * * For each entry, the comment is as follows: * * // 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51) * entry offset ----/ / / / / * entry number ---------/ / / / * size of the entry -------------/ / / * vector name -------------------------------------/ / * interruptions triggering this vector ----------------------/ * * The table is 32KB in size and must be aligned on 32KB boundary. * (The CPU ignores the 15 lower bits of the address) * * Table is based upon EAS2.6 (Oct 1999) */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef XEN #include #else #include #endif #if 1 # define PSR_DEFAULT_BITS psr.ac #else # define PSR_DEFAULT_BITS 0 #endif #if 0 /* * This lets you track the last eight faults that occurred on the CPU. * Make sure ar.k2 isn't needed for something else before enabling this... */ # define DBG_FAULT(i) \ mov r16=ar.k2;; \ shl r16=r16,8;; \ add r16=(i),r16;; \ mov ar.k2=r16 #else # define DBG_FAULT(i) #endif #define MINSTATE_VIRT /* needed by minstate.h */ #include "minstate.h" #define FAULT(n) \ mov r19=n; /* prepare to save predicates */ \ mov r31=pr; \ br.sptk.many dispatch_to_fault_handler #define FAULT_OR_REFLECT(n) \ mov r20=cr.ipsr; \ mov r19=n; /* prepare to save predicates */ \ mov r31=pr;; \ extr.u r20=r20,IA64_PSR_CPL0_BIT,2;; \ cmp.ne p6,p0=r0,r20; /* cpl != 0?*/ \ (p6) br.dptk.many dispatch_reflection; \ br.sptk.few dispatch_to_fault_handler .section .text.ivt,"ax" .align 32768 // align on 32KB boundary .global ia64_ivt ia64_ivt: ////////////////////////////////////////////////////////////////////////// // 0x0000 Entry 0 (size 64 bundles) VHPT Translation (8,20,47) ENTRY(vhpt_miss) DBG_FAULT(0) #ifdef XEN FAULT(0) #else /* * The VHPT vector is invoked when the TLB entry for the virtual * page table is missing. This happens only as a result of a * previous (the "original") TLB miss, which may either be caused * by an instruction fetch or a data access (or non-access). * * What we do here is normal TLB miss handing for the _original_ * miss, followed by inserting the TLB entry for the virtual page * table page that the VHPT walker was attempting to access. The * latter gets inserted as long as both L1 and L2 have valid * mappings for the faulting address. The TLB entry for the * original miss gets inserted only if the L3 entry indicates * that the page is present. * * do_page_fault gets invoked in the following cases: * - the faulting virtual address uses unimplemented address bits * - the faulting virtual address has no L1, L2, or L3 mapping */ mov r16=cr.ifa // get address that caused the TLB miss #ifdef CONFIG_HUGETLB_PAGE movl r18=PAGE_SHIFT mov r25=cr.itir #endif ;; rsm psr.dt // use physical addressing for data mov r31=pr // save the predicate registers mov r19=IA64_KR(PT_BASE) // get page table base address shl r21=r16,3 // shift bit 60 into sign bit shr.u r17=r16,61 // get the region number into r17 ;; shr r22=r21,3 #ifdef CONFIG_HUGETLB_PAGE extr.u r26=r25,2,6 ;; cmp.ne p8,p0=r18,r26 sub r27=r26,r18 ;; (p8) dep r25=r18,r25,2,6 (p8) shr r22=r22,r27 #endif ;; cmp.eq p6,p7=5,r17 // is IFA pointing into to region 5? shr.u r18=r22,PGDIR_SHIFT // get bits 33-63 of faulting address ;; (p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place srlz.d LOAD_PHYSICAL(p6, r19, swapper_pg_dir) // region 5 is rooted at // swapper_pg_dir .pred.rel "mutex", p6, p7 (p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT (p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3 ;; (p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=PTA + IFA(33,42)*8 (p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=PTA + // (((IFA(61,63) << 7) | // IFA(33,39))*8) cmp.eq p7,p6=0,r21 // unused address bits all zero? shr.u r18=r22,PMD_SHIFT // shift L2 index into position ;; ld8 r17=[r17] // fetch the L1 entry (may be 0) ;; (p7) cmp.eq p6,p7=r17,r0 // was L1 entry NULL? dep r17=r18,r17,3,(PAGE_SHIFT-3) // compute address of L2 page // table entry ;; (p7) ld8 r20=[r17] // fetch the L2 entry (may be 0) shr.u r19=r22,PAGE_SHIFT // shift L3 index into position ;; (p7) cmp.eq.or.andcm p6,p7=r20,r0 // was L2 entry NULL? dep r21=r19,r20,3,(PAGE_SHIFT-3) // compute address of L3 page // table entry ;; (p7) ld8 r18=[r21] // read the L3 PTE mov r19=cr.isr // cr.isr bit 0 tells us if // this is an insn miss ;; (p7) tbit.z p6,p7=r18,_PAGE_P_BIT // page present bit cleared? mov r22=cr.iha // get the VHPT address that // caused the TLB miss ;; // avoid RAW on p7 (p7) tbit.nz.unc p10,p11=r19,32 // is it an instruction TLB // miss? dep r23=0,r20,0,PAGE_SHIFT // clear low bits to get page // address ;; (p10) itc.i r18 // insert the instruction TLB // entry (p11) itc.d r18 // insert the data TLB entry (p6) br.cond.spnt.many page_fault // handle bad address/page not // present (page fault) mov cr.ifa=r22 #ifdef CONFIG_HUGETLB_PAGE (p8) mov cr.itir=r25 // change to default page-size // for VHPT #endif /* * Now compute and insert the TLB entry for the virtual page table. * We never execute in a page table page so there is no need to set * the exception deferral bit. */ adds r24=__DIRTY_BITS_NO_ED|_PAGE_PL_0|_PAGE_AR_RW,r23 ;; (p7) itc.d r24 ;; #ifdef CONFIG_SMP /* * Tell the assemblers dependency-violation checker that the above * "itc" instructions cannot possibly affect the following loads: */ dv_serialize_data /* * Re-check L2 and L3 pagetable. If they changed, we may have * received a ptc.g between reading the pagetable and the "itc". * If so, flush the entry we inserted and retry. */ ld8 r25=[r21] // read L3 PTE again ld8 r26=[r17] // read L2 entry again ;; cmp.ne p6,p7=r26,r20 // did L2 entry change mov r27=PAGE_SHIFT<<2 ;; (p6) ptc.l r22,r27 // purge PTE page translation (p7) cmp.ne.or.andcm p6,p7=r25,r18 // did L3 PTE change ;; (p6) ptc.l r16,r27 // purge translation #endif mov pr=r31,-1 // restore predicate registers rfi #endif END(vhpt_miss) .org ia64_ivt+0x400 ////////////////////////////////////////////////////////////////////////// // 0x0400 Entry 1 (size 64 bundles) ITLB (21) ENTRY(itlb_miss) DBG_FAULT(1) #ifdef XEN mov r16 = cr.ifa mov r31 = pr ;; extr.u r17=r16,59,5 ;; /* If address belongs to VMM, go to alt tlb handler */ cmp.eq p6,p0=0x1e,r17 (p6) br.cond.spnt late_alt_itlb_miss ;; cmp.eq p6,p0=0x1d,r17 (p6) br.cond.spnt late_alt_itlb_miss ;; mov pr = r31, 0x1ffff ;; #ifdef VHPT_GLOBAL br.cond.sptk fast_tlb_miss_reflect ;; #endif #endif /* * The ITLB handler accesses the L3 PTE via the virtually mapped linear * page table. If a nested TLB miss occurs, we switch into physical * mode, walk the page table, and then re-execute the L3 PTE read * and go on normally after that. */ mov r16=cr.ifa // get virtual address mov r29=b0 // save b0 mov r31=pr // save predicates .itlb_fault: mov r17=cr.iha // get virtual address of L3 PTE movl r30=1f // load nested fault // continuation point ;; 1: ld8 r18=[r17] // read L3 PTE ;; mov b0=r29 tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared? (p6) br.cond.spnt page_fault ;; itc.i r18 ;; #ifdef CONFIG_SMP /* * Tell the assemblers dependency-violation checker that the above * "itc" instructions cannot possibly affect the following loads: */ dv_serialize_data ld8 r19=[r17] // read L3 PTE again and see if same mov r20=PAGE_SHIFT<<2 // setup page size for purge ;; cmp.ne p7,p0=r18,r19 ;; (p7) ptc.l r16,r20 #endif mov pr=r31,-1 rfi END(itlb_miss) .org ia64_ivt+0x0800 ////////////////////////////////////////////////////////////////////////// // 0x0800 Entry 2 (size 64 bundles) DTLB (9,48) ENTRY(dtlb_miss) DBG_FAULT(2) #ifdef XEN mov r16=cr.ifa // get virtual address mov r31=pr ;; extr.u r17=r16,59,5 ;; cmp.eq p6,p0=0x1e,r17 // if the address belongs to VMM, go // to the alternate tlb handler (p6) br.cond.spnt late_alt_dtlb_miss ;; cmp.eq p6,p0=0x1d,r17 (p6) br.cond.spnt late_alt_dtlb_miss ;; #if VHPT_ENABLED mov r30=cr.ipsr // XXX TODO optimization mov r28=cr.iip mov r17=cr.isr ;; extr.u r18 = r30, IA64_PSR_CPL0_BIT, 2 // extract psr.cpl ;; cmp.ne p6, p0 = r0, r18 // cpl == 0? (p6) br.cond.sptk 2f tbit.nz p7,p0=r17,IA64_ISR_SP_BIT // is speculation bit on? ;; (p7) br.cond.spnt 2f // Is the faulted iip in the vmm area? // -- check [59:58] bit // -- if 00, 11: guest // -- if 01, 10: vmm extr.u r19 = r28, 58, 2 ;; cmp.eq p10, p0 = 0x0, r19 (p10) br.cond.sptk 2f cmp.eq p11, p0 = 0x3, r19 (p11) br.cond.sptk 2f // Is the faulted address is in the identity mapping area? // must be either 0xf000... or 0xe8000... extr.u r20 = r16, 59, 5 ;; cmp.eq p12, p0 = 0x1e, r20 // (0xf0 >> 3) = 0x1e (p12) br.cond.spnt 1f cmp.eq p0, p13 = 0x1d, r20 // (0xe8 >> 3) = 0x1d (p13) br.cond.sptk 2f 1: movl r24=PAGE_KERNEL // xen identity mapping area. movl r25=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff) ;; shr.u r26=r16,55 // move address bit 59 to bit 4 and r25=r25,r16 // clear ed, reserved bits, and PTE control bits ;; and r26=0x10,r26 // bit 4=address-bit(59) ;; or r25=r25,r24 // insert PTE control bits into r25 ;; or r25=r25,r26 // set bit 4 (uncached) if the access was to // region 6 ;; itc.d r25 // insert the TLB entry mov pr=r31,-1 rfi 2: #endif #ifdef VHPT_GLOBAL // br.cond.sptk page_fault br.cond.sptk fast_tlb_miss_reflect ;; #endif mov r29=b0 // save b0 #else /* * The DTLB handler accesses the L3 PTE via the virtually mapped linear * page table. If a nested TLB miss occurs, we switch into physical * mode, walk the page table, and then re-execute the L3 PTE read * and go on normally after that. */ mov r16=cr.ifa // get virtual address mov r29=b0 // save b0 mov r31=pr // save predicates #endif dtlb_fault: mov r17=cr.iha // get virtual address of L3 PTE movl r30=1f // load nested fault // continuation point ;; 1: ld8 r18=[r17] // read L3 PTE ;; mov b0=r29 tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared? (p6) br.cond.spnt page_fault ;; itc.d r18 ;; #ifdef CONFIG_SMP /* * Tell the assemblers dependency-violation checker that the above * "itc" instructions cannot possibly affect the following loads: */ dv_serialize_data ld8 r19=[r17] // read L3 PTE again and see if same mov r20=PAGE_SHIFT<<2 // setup page size for purge ;; cmp.ne p7,p0=r18,r19 ;; (p7) ptc.l r16,r20 #endif mov pr=r31,-1 rfi END(dtlb_miss) .org ia64_ivt+0x0c00 ////////////////////////////////////////////////////////////////////////// // 0x0c00 Entry 3 (size 64 bundles) Alt ITLB (19) ENTRY(alt_itlb_miss) DBG_FAULT(3) #ifdef XEN mov r16=cr.ifa // get address that caused the TLB miss mov r31=pr ;; late_alt_itlb_miss: mov r21=cr.ipsr movl r17=PAGE_KERNEL movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff) ;; #else mov r16=cr.ifa // get address that caused the TLB miss movl r17=PAGE_KERNEL mov r21=cr.ipsr movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff) mov r31=pr ;; #endif #ifdef CONFIG_DISABLE_VHPT shr.u r22=r16,61 // get the region number into r21 ;; cmp.gt p8,p0=6,r22 // user mode ;; (p8) thash r17=r16 ;; (p8) mov cr.iha=r17 (p8) mov r29=b0 // save b0 (p8) br.cond.dptk .itlb_fault #endif extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl and r19=r19,r16 // clear ed, reserved bits, and PTE control bits #ifdef XEN shr.u r18=r16,55 // move address bit 59 to bit 4 ;; and r18=0x10,r18 // bit 4=address-bit(59) #else shr.u r18=r16,57 // move address bit 61 to bit 4 ;; andcm r18=0x10,r18 // bit 4=~address-bit(61) #endif cmp.ne p8,p0=r0,r23 // psr.cpl != 0? or r19=r17,r19 // insert PTE control bits into r19 ;; or r19=r19,r18 // set bit 4 (uncached) if the access was to // region 6 (p8) br.cond.spnt page_fault ;; itc.i r19 // insert the TLB entry mov pr=r31,-1 rfi END(alt_itlb_miss) .org ia64_ivt+0x1000 ////////////////////////////////////////////////////////////////////////// // 0x1000 Entry 4 (size 64 bundles) Alt DTLB (7,46) ENTRY(alt_dtlb_miss) DBG_FAULT(4) #ifdef XEN mov r16=cr.ifa // get address that caused the TLB miss mov r31=pr ;; late_alt_dtlb_miss: mov r20=cr.isr movl r17=PAGE_KERNEL mov r21=cr.ipsr movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff) ;; #endif #ifdef CONFIG_DISABLE_VHPT shr.u r22=r16,61 // get the region into r22 ;; cmp.gt p8,p0=6,r22 // access to region 0-5 ;; (p8) thash r17=r16 ;; (p8) mov cr.iha=r17 (p8) mov r29=b0 // save b0 (p8) br.cond.dptk dtlb_fault #endif extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl and r22=IA64_ISR_CODE_MASK,r20 // get the isr.code field tbit.nz p6,p7=r20,IA64_ISR_SP_BIT // is speculation bit on? #ifdef XEN shr.u r18=r16,55 // move address bit 59 to bit 4 and r19=r19,r16 // clear ed, reserved bits, and // PTE control bits tbit.nz p9,p0=r20,IA64_ISR_NA_BIT // is non-access bit on? ;; and r18=0x10,r18 // bit 4=address-bit(59) #else shr.u r18=r16,57 // move address bit 61 to bit 4 and r19=r19,r16 // clear ed, reserved bits, and // PTE control bits tbit.nz p9,p0=r20,IA64_ISR_NA_BIT // is non-access bit on? ;; andcm r18=0x10,r18 // bit 4=~address-bit(61) #endif cmp.ne p8,p0=r0,r23 (p9) cmp.eq.or.andcm p6,p7=IA64_ISR_CODE_LFETCH,r22 // check isr.code field (p8) br.cond.spnt page_fault #ifdef XEN ;; #ifdef CONFIG_VIRTUAL_FRAME_TABLE shr r22=r16,56 // Test for the address of virtual frame_table ;; cmp.eq p8,p0=((VIRT_FRAME_TABLE_ADDR>>56)&0xff)-0x100,r22 (p8) br.cond.sptk frametable_miss ;; #endif // If it is not a Xen address, handle it via page_fault. // Note that 0xf000 (cached) and 0xe800 (uncached) addresses // should be OK. extr.u r22=r16,59,5 ;; cmp.eq p8,p0=0x1e,r22 (p8) br.cond.spnt 1f ;; cmp.ne p8,p0=0x1d,r22 (p8) br.cond.sptk page_fault ;; 1: #endif dep r21=-1,r21,IA64_PSR_ED_BIT,1 or r19=r19,r17 // insert PTE control bits into r19 ;; or r19=r19,r18 // set bit 4 (uncached) if the access was to // region 6 (p6) mov cr.ipsr=r21 ;; (p7) itc.d r19 // insert the TLB entry mov pr=r31,-1 rfi END(alt_dtlb_miss) #ifdef CONFIG_VIRTUAL_FRAME_TABLE GLOBAL_ENTRY(frametable_miss) rsm psr.dt // switch to using physical data addressing movl r24=(frametable_pg_dir-PAGE_OFFSET) // r24=__pa(frametable_pg_dir) ;; srlz.d extr.u r17=r16,PGDIR_SHIFT,(PAGE_SHIFT-3) ;; shladd r24=r17,3,r24 // r24=&pgd[pgd_offset(addr)] ;; ld8 r24=[r24] // r24=pgd[pgd_offset(addr)] extr.u r18=r16,PMD_SHIFT,(PAGE_SHIFT-3) // r18=pmd_offset ;; cmp.eq p6,p7=0,r24 // pgd present? shladd r24=r18,3,r24 // r24=&pmd[pmd_offset(addr)] ;; (p7) ld8 r24=[r24] // r24=pmd[pmd_offset(addr)] extr.u r19=r16,PAGE_SHIFT,(PAGE_SHIFT-3)// r19=pte_offset (p6) br.spnt.few frametable_fault ;; cmp.eq p6,p7=0,r24 // pmd present? shladd r24=r19,3,r24 // r24=&pte[pte_offset(addr)] ;; (p7) ld8 r24=[r24] // r24=pte[pte_offset(addr)] mov r25=0x700|(PAGE_SHIFT<<2) // key=7 (p6) br.spnt.few frametable_fault ;; mov cr.itir=r25 ssm psr.dt // switch to using virtual data addressing tbit.z p6,p7=r24,_PAGE_P_BIT // pte present? ;; (p7) itc.d r24 // install updated PTE (p6) br.spnt.few frametable_fault // page present bit cleared? ;; mov pr=r31,-1 // restore predicate registers rfi END(frametable_miss) ENTRY(frametable_fault) ssm psr.dt // switch to using virtual data addressing mov r18=cr.iip movl r19=ia64_frametable_probe ;; cmp.eq p6,p7=r18,r19 // is faulting addrress ia64_frametable_probe? mov r8=0 // assumes that 'probe.r' uses r8 dep r21=-1,r21,IA64_PSR_RI_BIT+1,1 // return to next instruction in // bundle 2 ;; (p6) mov cr.ipsr=r21 mov r19=4 // FAULT(4) (p7) br.spnt.few dispatch_to_fault_handler ;; mov pr=r31,-1 rfi END(frametable_fault) GLOBAL_ENTRY(ia64_frametable_probe) { probe.r r8=r32,0 // destination register must be r8 nop.f 0x0 br.ret.sptk.many b0 // this instruction must be in bundle 2 } END(ia64_frametable_probe) #endif /* CONFIG_VIRTUAL_FRAME_TABLE */ .org ia64_ivt+0x1400 ///////////////////////////////////////////////////////////////////////////////////////// // 0x1400 Entry 5 (size 64 bundles) Data nested TLB (6,45) ENTRY(nested_dtlb_miss) DBG_FAULT(5) #ifdef XEN mov b0=r30 br.sptk.many b0 // return to the continuation point ;; #else /* * In the absence of kernel bugs, we get here when the virtually * mapped linear page table is accessed non-speculatively (e.g., * in the Dirty-bit, Instruction Access-bit, or Data Access-bit * faults). If the DTLB entry for the virtual page table is missing, * a nested TLB miss fault is triggered and control is transferred * to this point. When this happens, we lookup the pte for the * faulting address by walking the page table in physical mode * and return to the continuation point passed in register r30 * (or call page_fault if the address is not mapped). * * Input: r16: faulting address * r29: saved b0 * r30: continuation address * r31: saved pr * * Output: r17: physical address of L3 PTE of faulting address * r29: saved b0 * r30: continuation address * r31: saved pr * * Clobbered: b0, r18, r19, r21, psr.dt (cleared) */ rsm psr.dt // switch to using physical data // addressing mov r19=IA64_KR(PT_BASE) // get the page table base address shl r21=r16,3 // shift bit 60 into sign bit ;; shr.u r17=r16,61 // get the region number into r17 ;; cmp.eq p6,p7=5,r17 // is faulting address in region 5? shr.u r18=r16,PGDIR_SHIFT // get bits 33-63 of faulting address ;; (p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place srlz.d LOAD_PHYSICAL(p6, r19, swapper_pg_dir) // region 5 is rooted at // swapper_pg_dir .pred.rel "mutex", p6, p7 (p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT (p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3 ;; (p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=PTA + IFA(33,42)*8 (p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=PTA + (((IFA(61,63) << 7) | // IFA(33,39))*8) cmp.eq p7,p6=0,r21 // unused address bits all zeroes? shr.u r18=r16,PMD_SHIFT // shift L2 index into position ;; ld8 r17=[r17] // fetch the L1 entry (may be 0) ;; (p7) cmp.eq p6,p7=r17,r0 // was L1 entry NULL? dep r17=r18,r17,3,(PAGE_SHIFT-3) // compute address of L2 page table // entry ;; (p7) ld8 r17=[r17] // fetch the L2 entry (may be 0) shr.u r19=r16,PAGE_SHIFT // shift L3 index into position ;; (p7) cmp.eq.or.andcm p6,p7=r17,r0 // was L2 entry NULL? dep r17=r19,r17,3,(PAGE_SHIFT-3) // compute address of L3 page table // entry (p6) br.cond.spnt page_fault mov b0=r30 br.sptk.many b0 // return to continuation point #endif END(nested_dtlb_miss) .org ia64_ivt+0x1800 ////////////////////////////////////////////////////////////////////////// // 0x1800 Entry 6 (size 64 bundles) Instruction Key Miss (24) ENTRY(ikey_miss) DBG_FAULT(6) #ifdef XEN FAULT_OR_REFLECT(6) #else FAULT(6) #endif END(ikey_miss) //---------------------------------------------------------------- // call do_page_fault (predicates are in r31, psr.dt may be off, // r16 is faulting address) #ifdef XEN GLOBAL_ENTRY(page_fault) #else ENTRY(page_fault) #endif ssm psr.dt ;; srlz.i ;; SAVE_MIN_WITH_COVER #ifdef XEN alloc r15=ar.pfs,0,0,4,0 mov out0=cr.ifa mov out1=cr.isr mov out3=cr.itir #else alloc r15=ar.pfs,0,0,3,0 mov out0=cr.ifa mov out1=cr.isr #endif adds r3=8,r2 // set up second base pointer ;; ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption // collection is on ;; (p15) ssm psr.i // restore psr.i movl r14=ia64_leave_kernel ;; SAVE_REST mov rp=r14 ;; adds out2=16,r12 // out2 = pointer to pt_regs br.call.sptk.many b6=ia64_do_page_fault // ignore return address END(page_fault) .org ia64_ivt+0x1c00 ////////////////////////////////////////////////////////////////////////// // 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51) ENTRY(dkey_miss) DBG_FAULT(7) #ifdef XEN FAULT_OR_REFLECT(7) #else FAULT(7) #endif END(dkey_miss) .org ia64_ivt+0x2000 ////////////////////////////////////////////////////////////////////////// // 0x2000 Entry 8 (size 64 bundles) Dirty-bit (54) ENTRY(dirty_bit) DBG_FAULT(8) #ifdef XEN mov r20=cr.ipsr mov r31=pr ;; extr.u r20=r20,IA64_PSR_CPL0_BIT,2 ;; mov r19=8 // prepare to save predicates cmp.eq p6,p0=r0,r20 // cpl == 0? (p6) br.sptk.few dispatch_to_fault_handler // If shadow mode is not enabled, reflect the fault. movl r22=THIS_CPU(cpu_kr)+IA64_KR_CURRENT_OFFSET ;; ld8 r22=[r22] ;; add r22=IA64_VCPU_DOMAIN_OFFSET,r22 ;; ld8 r22=[r22] // read domain ;; add r22=IA64_DOMAIN_SHADOW_BITMAP_OFFSET,r22 ;; ld8 r22=[r22] ;; cmp.eq p6,p0=r0,r22 // !shadow_bitmap ? (p6) br.dptk.many dispatch_reflection SAVE_MIN_WITH_COVER alloc r14=ar.pfs,0,0,4,0 mov out0=cr.ifa mov out1=cr.itir mov out2=cr.isr adds out3=16,sp ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption // collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 br.call.sptk.many b6=ia64_shadow_fault #else /* * What we do here is to simply turn on the dirty bit in the PTE. * We need to update both the page-table and the TLB entry. To * efficiently access the PTE, we address it through the virtual * page table. Most likely, the TLB entry for the relevant virtual * page table page is still present in the TLB so we can normally * do this without additional TLB misses. In case the necessary * virtual page table TLB entry isn't present, we take a nested * TLB miss hit where we look up the physical address of the L3 * PTE and then continue at label 1 below. */ mov r16=cr.ifa // get the address that caused the // fault movl r30=1f // load continuation point in case // of nested fault ;; thash r17=r16 // compute virtual address of L3 PTE mov r29=b0 // save b0 in case of nested fault mov r31=pr // save pr #ifdef CONFIG_SMP mov r28=ar.ccv // save ar.ccv ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 mov ar.ccv=r18 // set compare value for cmpxchg or r25=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits ;; cmpxchg8.acq r26=[r17],r25,ar.ccv mov r24=PAGE_SHIFT<<2 ;; cmp.eq p6,p7=r26,r18 ;; (p6) itc.d r25 // install updated PTE ;; /* * Tell the assemblers dependency-violation checker that the above * "itc" instructions cannot possibly affect the following loads: */ dv_serialize_data ld8 r18=[r17] // read PTE again ;; cmp.eq p6,p7=r18,r25 // is it same as the newly installed ;; (p7) ptc.l r16,r24 mov b0=r29 // restore b0 mov ar.ccv=r28 #else ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 or r18=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits mov b0=r29 // restore b0 ;; st8 [r17]=r18 // store back updated PTE itc.d r18 // install updated PTE #endif mov pr=r31,-1 // restore pr rfi #endif END(dirty_bit) .org ia64_ivt+0x2400 ////////////////////////////////////////////////////////////////////////// // 0x2400 Entry 9 (size 64 bundles) Instruction Access-bit (27) ENTRY(iaccess_bit) DBG_FAULT(9) #ifdef XEN mov r16=cr.isr mov r17=cr.ifa mov r31=pr mov r19=9 mov r20=0x2400 br.sptk.many fast_access_reflect;; #else // Like Entry 8, except for instruction access mov r16=cr.ifa // get the address that caused the // fault movl r30=1f // load continuation point in case // of nested fault mov r31=pr // save predicates #ifdef CONFIG_ITANIUM /* * Erratum 10 (IFA may contain incorrect address) has "NoFix" status. */ mov r17=cr.ipsr ;; mov r18=cr.iip tbit.z p6,p0=r17,IA64_PSR_IS_BIT // IA64 instruction set? ;; (p6) mov r16=r18 // if so, use cr.iip instead of cr.ifa #endif /* CONFIG_ITANIUM */ ;; thash r17=r16 // compute virtual address of L3 PTE mov r29=b0 // save b0 in case of nested fault) #ifdef CONFIG_SMP mov r28=ar.ccv // save ar.ccv ;; 1: ld8 r18=[r17] ;; mov ar.ccv=r18 // set compare value for cmpxchg or r25=_PAGE_A,r18 // set the accessed bit ;; cmpxchg8.acq r26=[r17],r25,ar.ccv mov r24=PAGE_SHIFT<<2 ;; cmp.eq p6,p7=r26,r18 ;; (p6) itc.i r25 // install updated PTE ;; /* * Tell the assemblers dependency-violation checker that the above * "itc" instructions cannot possibly affect the following loads: */ dv_serialize_data ld8 r18=[r17] // read PTE again ;; cmp.eq p6,p7=r18,r25 // is it same as the newly installed ;; (p7) ptc.l r16,r24 mov b0=r29 // restore b0 mov ar.ccv=r28 #else /* !CONFIG_SMP */ ;; 1: ld8 r18=[r17] ;; or r18=_PAGE_A,r18 // set the accessed bit mov b0=r29 // restore b0 ;; st8 [r17]=r18 // store back updated PTE itc.i r18 // install updated PTE #endif /* !CONFIG_SMP */ mov pr=r31,-1 rfi #endif END(iaccess_bit) .org ia64_ivt+0x2800 ////////////////////////////////////////////////////////////////////////// // 0x2800 Entry 10 (size 64 bundles) Data Access-bit (15,55) ENTRY(daccess_bit) DBG_FAULT(10) #ifdef XEN mov r16=cr.isr mov r17=cr.ifa mov r31=pr mov r19=10 mov r20=0x2800 br.sptk.many fast_access_reflect ;; #else // Like Entry 8, except for data access mov r16=cr.ifa // get the address that caused the // fault movl r30=1f // load continuation point in case // of nested fault ;; thash r17=r16 // compute virtual address of L3 PTE mov r31=pr mov r29=b0 // save b0 in case of nested fault) #ifdef CONFIG_SMP mov r28=ar.ccv // save ar.ccv ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 mov ar.ccv=r18 // set compare value for cmpxchg or r25=_PAGE_A,r18 // set the dirty bit ;; cmpxchg8.acq r26=[r17],r25,ar.ccv mov r24=PAGE_SHIFT<<2 ;; cmp.eq p6,p7=r26,r18 ;; (p6) itc.d r25 // install updated PTE /* * Tell the assemblers dependency-violation checker that the above * "itc" instructions cannot possibly affect the following loads: */ dv_serialize_data ;; ld8 r18=[r17] // read PTE again ;; cmp.eq p6,p7=r18,r25 // is it same as the newly installed ;; (p7) ptc.l r16,r24 mov ar.ccv=r28 #else ;; 1: ld8 r18=[r17] ;; // avoid RAW on r18 or r18=_PAGE_A,r18 // set the accessed bit ;; st8 [r17]=r18 // store back updated PTE itc.d r18 // install updated PTE #endif mov b0=r29 // restore b0 mov pr=r31,-1 rfi #endif END(daccess_bit) .org ia64_ivt+0x2c00 ////////////////////////////////////////////////////////////////////////// // 0x2c00 Entry 11 (size 64 bundles) Break instruction (33) ENTRY(break_fault) /* * The streamlined system call entry/exit paths only save/restore * the initial part of pt_regs. This implies that the callers of * system-calls must adhere to the normal procedure calling * conventions. * * Registers to be saved & restored: * CR registers: cr.ipsr, cr.iip, cr.ifs * AR registers: ar.unat, ar.pfs, ar.rsc, ar.rnat, ar.bspstore, * ar.fpsr * others: pr, b0, b6, loadrs, r1, r11, r12, r13, r15 * Registers to be restored only: * r8-r11: output value from the system call. * * During system call exit, scratch registers (including r15) are * modified/cleared to prevent leaking bits from kernel to user * level. */ DBG_FAULT(11) mov r16=cr.isr mov r17=cr.iim mov r31=pr ;; cmp.eq p7,p0=r17,r0 (p7) br.spnt.few dispatch_break_fault ;; #ifdef CRASH_DEBUG // A panic can occur before domain0 is created. In such cases, // referencing XSI_PSR_IC causes nested_dtlb_miss. movl r18=CDB_BREAK_NUM ;; cmp.eq p7,p0=r17,r18 ;; (p7) br.spnt.few dispatch_break_fault ;; #endif movl r18=THIS_CPU(current_psr_ic_addr) ;; ld8 r18=[r18] ;; cmp.eq p7,p0=r0,r17 // is this a psuedo-cover? (p7) br.spnt.many dispatch_privop_fault ;; // if (ipsr.cpl == 2 && (iim - HYPERPRIVOP_START) < HYPERPRIVOP_MAX) // this is a hyperprivop. A hyperprivop is hand-coded assembly with // psr.ic off which means it can make no calls, cannot use r1-r15, // and it can have no memory accesses unless they are to pinned // addresses! mov r19= cr.ipsr movl r20=HYPERPRIVOP_START mov r21=HYPERPRIVOP_MAX ;; sub r20=r17,r20 extr.u r19=r19,IA64_PSR_CPL0_BIT,2 // extract cpl field from cr.ipsr ;; cmp.gtu p7,p0=r21,r20 ;; cmp.eq.and p7,p0=2,r19 // ipsr.cpl==2 (p7) br.sptk.many fast_hyperprivop ;; movl r22=THIS_CPU(cpu_kr)+IA64_KR_CURRENT_OFFSET ;; ld8 r22 = [r22] ;; adds r23=IA64_VCPU_BREAKIMM_OFFSET,r22 ;; ld4 r23=[r23];; cmp4.eq p6,p0=r23,r17;; // Xen-reserved breakimm? cmp.eq.and p6,p0=2,r19 (p6) br.spnt.many fast_hypercall ;; br.sptk.many fast_break_reflect ;; fast_hypercall: shr r25=r2,8;; cmp.ne p7,p0=r0,r25 (p7) br.spnt.few dispatch_break_fault ;; // fall through /* * The streamlined system call entry/exit paths only save/restore the initial part * of pt_regs. This implies that the callers of system-calls must adhere to the * normal procedure calling conventions. * * Registers to be saved & restored: * CR registers: cr.ipsr, cr.iip, cr.ifs * AR registers: ar.unat, ar.pfs, ar.rsc, ar.rnat, ar.bspstore, ar.fpsr * others: pr, b0, b6, loadrs, r1, r11, r12, r13, r15 * Registers to be restored only: * r8-r11: output value from the system call. * * During system call exit, scratch registers (including r15) are modified/cleared * to prevent leaking bits from kernel to user level. */ // DBG_FAULT(11) // mov.m r16=IA64_KR(CURRENT) // M2 r16 <- current task (12 cyc) mov r16=r22 mov r29=cr.ipsr // M2 (12 cyc) // mov r31=pr // I0 (2 cyc) mov r15=r2 // mov r17=cr.iim // M2 (2 cyc) mov.m r27=ar.rsc // M2 (12 cyc) // mov r18=__IA64_BREAK_SYSCALL // A mov.m ar.rsc=0 // M2 mov.m r21=ar.fpsr // M2 (12 cyc) mov r19=b6 // I0 (2 cyc) ;; mov.m r23=ar.bspstore // M2 (12 cyc) mov.m r24=ar.rnat // M2 (5 cyc) mov.i r26=ar.pfs // I0 (2 cyc) invala // M0|1 nop.m 0 // M mov r20=r1 // A save r1 nop.m 0 // movl r30=sys_call_table // X movl r30=ia64_hypercall_table // X mov r28=cr.iip // M2 (2 cyc) // cmp.eq p0,p7=r18,r17 // I0 is this a system call? //(p7) br.cond.spnt non_syscall // B no -> // // From this point on, we are definitely on the syscall-path // and we can use (non-banked) scratch registers. // /////////////////////////////////////////////////////////////////////// mov r1=r16 // A move task-pointer to "addl"-addressable reg mov r2=r16 // A setup r2 for ia64_syscall_setup // add r9=TI_FLAGS+IA64_TASK_SIZE,r16 // A r9 = ¤t_thread_info()->flags adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 // adds r15=-1024,r15 // A subtract 1024 from syscall number // mov r3=NR_syscalls - 1 mov r3=NR_hypercalls - 1 ;; ld1.bias r17=[r16] // M0|1 r17 = current->thread.on_ustack flag // ld4 r9=[r9] // M0|1 r9 = current_thread_info()->flags mov r9=r0 // force flags = 0 extr.u r8=r29,41,2 // I0 extract ei field from cr.ipsr shladd r30=r15,3,r30 // A r30 = sys_call_table + 8*(syscall-1024) addl r22=IA64_RBS_OFFSET,r1 // A compute base of RBS cmp.leu p6,p7=r15,r3 // A syscall number in range? ;; lfetch.fault.excl.nt1 [r22] // M0|1 prefetch RBS (p6) ld8 r30=[r30] // M0|1 load address of syscall entry point tnat.nz.or p7,p0=r15 // I0 is syscall nr a NaT? mov.m ar.bspstore=r22 // M2 switch to kernel RBS cmp.eq p8,p9=2,r8 // A isr.ei==2? ;; (p8) mov r8=0 // A clear ei to 0 //(p7) movl r30=sys_ni_syscall // X (p7) movl r30=do_ni_hypercall // X (p8) adds r28=16,r28 // A switch cr.iip to next bundle (p9) adds r8=1,r8 // A increment ei to next slot nop.i 0 ;; mov.m r25=ar.unat // M2 (5 cyc) dep r29=r8,r29,41,2 // I0 insert new ei into cr.ipsr // adds r15=1024,r15 // A restore original syscall number // // If any of the above loads miss in L1D, we'll stall here until // the data arrives. // /////////////////////////////////////////////////////////////////////// st1 [r16]=r0 // M2|3 clear current->thread.on_ustack flag mov b6=r30 // I0 setup syscall handler branch reg early cmp.eq pKStk,pUStk=r0,r17 // A were we on kernel stacks already? // and r9=_TIF_SYSCALL_TRACEAUDIT,r9 // A mask trace or audit mov r18=ar.bsp // M2 (12 cyc) ;; (pUStk) addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r1 // A compute base of memory stack // cmp.eq p14,p0=r9,r0 // A are syscalls being traced/audited? br.call.sptk.many b7=ia64_syscall_setup // B 1: mov ar.rsc=0x3 // M2 set eager mode, pl 0, LE, loadrs=0 nop 0 bsw.1 // B (6 cyc) regs are saved, switch to bank 1 ;; ssm psr.ic | PSR_DEFAULT_BITS // M2 now it's safe to re-enable intr.-collection // movl r3=ia64_ret_from_syscall // X ;; srlz.i // M0 ensure interruption collection is on // mov rp=r3 // I0 set the real return addr //(p10) br.cond.spnt.many ia64_ret_from_syscall // B return if bad call-frame or r15 is a NaT (p15) ssm psr.i // M2 restore psr.i //(p14) br.call.sptk.many b6=b6 // B invoke syscall-handker (ignore return addr) // br.call.sptk.many b6=b6 // B invoke syscall-handker (ignore return addr) br.call.sptk.many b0=b6 // B invoke syscall-handker (ignore return addr) // br.cond.spnt.many ia64_trace_syscall // B do syscall-tracing thingamagic ;; adds r2=PT(R8)+16,r12 ;; st8 [r2]=r8 ;; br.call.sptk.many b0=do_softirq ;; //restore hypercall argument if continuation adds r2=IA64_VCPU_HYPERCALL_CONTINUATION_OFS,r13 ;; ld1 r20=[r2] ;; st1 [r2]=r0 ;; cmp.ne p6,p0=r20,r0 ;; (p6) adds r2=PT(R16)+16,r12 (p6) adds r3=PT(R17)+16,r12 ;; (p6) ld8 r32=[r2],16 (p6) ld8 r33=[r3],16 ;; (p6) ld8 r34=[r2],16 (p6) ld8 r35=[r3],16 ;; (p6) ld8 r36=[r2],16 ;; //save ar.bsp before cover mov r16=ar.bsp add r2=PT(R14)+16,r12 ;; st8 [r2]=r16 ;; rsm psr.i|psr.ic ;; srlz.i ;; cover ;; mov r20=cr.ifs adds r2=PT(CR_IFS)+16,r12 ;; st8 [r2]=r20 ;; br.call.sptk.many b0=reflect_event ;; adds r2=PT(R14)+16,r12 adds r3=PT(R8)+16,r12 ;; //r16 contains ar.bsp before cover ld8 r16=[r2] ld8 r8=[r3] ;; br.sptk.many ia64_ret_from_syscall ;; END(break_fault) .org ia64_ivt+0x3000 ////////////////////////////////////////////////////////////////////////// // 0x3000 Entry 12 (size 64 bundles) External Interrupt (4) ENTRY(interrupt) DBG_FAULT(12) mov r31=pr // prepare to save predicates ;; #ifdef XEN mov r30=cr.ivr // pass cr.ivr as first arg // FIXME: this is a hack... use cpuinfo.ksoftirqd because its // not used anywhere else and we need a place to stash ivr and // there's no registers available unused by SAVE_MIN/REST movl r29=THIS_CPU(cpu_info)+IA64_CPUINFO_KSOFTIRQD_OFFSET ;; st8 [r29]=r30 ;; movl r28=slow_interrupt ;; mov r29=rp ;; mov rp=r28 ;; br.cond.sptk.many fast_tick_reflect ;; slow_interrupt: mov rp=r29;; #endif SAVE_MIN_WITH_COVER // uses r31; defines r2 and r3 ssm psr.ic | PSR_DEFAULT_BITS ;; adds r3=8,r2 // set up second base pointer for SAVE_REST srlz.i // ensure everybody knows psr.ic is back on ;; SAVE_REST ;; alloc r14=ar.pfs,0,0,2,0 // must be first in an insn group #ifdef XEN movl out0=THIS_CPU(cpu_info)+IA64_CPUINFO_KSOFTIRQD_OFFSET;; ld8 out0=[out0];; #else mov out0=cr.ivr // pass cr.ivr as first arg #endif add out1=16,sp // pass pointer to pt_regs as second arg #ifndef XEN ;; srlz.d // make sure we see the effect of cr.ivr #endif movl r14=ia64_leave_kernel ;; mov rp=r14 br.call.sptk.many b6=ia64_handle_irq END(interrupt) .org ia64_ivt+0x3400 ////////////////////////////////////////////////////////////////////////// // 0x3400 Entry 13 (size 64 bundles) Reserved DBG_FAULT(13) FAULT(13) #ifdef XEN // There is no particular reason for this code to be here, other // than that there happens to be space here that would go unused // otherwise. If this fault ever gets "unreserved", simply move // the following code to a more suitable spot... GLOBAL_ENTRY(dispatch_break_fault) SAVE_MIN_WITH_COVER ;; dispatch_break_fault_post_save: alloc r14=ar.pfs,0,0,4,0 // now it's safe (must be first in insn group!) mov out0=cr.ifa adds out1=16,sp mov out2=cr.isr // FIXME: pity to make this slow access twice mov out3=cr.iim // FIXME: pity to make this slow access twice ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 // br.sptk.many ia64_prepare_handle_break // TODO: why commented out? br.call.sptk.many b6=ia64_handle_break END(dispatch_break_fault) #endif .org ia64_ivt+0x3800 ////////////////////////////////////////////////////////////////////////// // 0x3800 Entry 14 (size 64 bundles) Reserved DBG_FAULT(14) FAULT(14) #ifdef XEN // this code segment is from 2.6.16.13 /* * There is no particular reason for this code to be here, other than that * there happens to be space here that would go unused otherwise. If this * fault ever gets "unreserved", simply moved the following code to a more * suitable spot... * * ia64_syscall_setup() is a separate subroutine so that it can * allocate stacked registers so it can safely demine any * potential NaT values from the input registers. * * On entry: * - executing on bank 0 or bank 1 register set (doesn't matter) * - r1: stack pointer * - r2: current task pointer * - r3: preserved * - r11: original contents (saved ar.pfs to be saved) * - r12: original contents (sp to be saved) * - r13: original contents (tp to be saved) * - r15: original contents (syscall # to be saved) * - r18: saved bsp (after switching to kernel stack) * - r19: saved b6 * - r20: saved r1 (gp) * - r21: saved ar.fpsr * - r22: kernel's register backing store base (krbs_base) * - r23: saved ar.bspstore * - r24: saved ar.rnat * - r25: saved ar.unat * - r26: saved ar.pfs * - r27: saved ar.rsc * - r28: saved cr.iip * - r29: saved cr.ipsr * - r31: saved pr * - b0: original contents (to be saved) * On exit: * - p10: TRUE if syscall is invoked with more than 8 out * registers or r15's Nat is true * - r1: kernel's gp * - r3: preserved (same as on entry) * - r8: -EINVAL if p10 is true * - r12: points to kernel stack * - r13: points to current task * - r14: preserved (same as on entry) * - p13: preserved * - p15: TRUE if interrupts need to be re-enabled * - ar.fpsr: set to kernel settings * - b6: preserved (same as on entry) */ GLOBAL_ENTRY(ia64_syscall_setup) #if PT(B6) != 0 # error This code assumes that b6 is the first field in pt_regs. #endif st8 [r1]=r19 // save b6 add r16=PT(CR_IPSR),r1 // initialize first base pointer add r17=PT(R11),r1 // initialize second base pointer ;; alloc r19=ar.pfs,8,0,0,0 // ensure in0-in7 are writable st8 [r16]=r29,PT(AR_PFS)-PT(CR_IPSR) // save cr.ipsr tnat.nz p8,p0=in0 st8.spill [r17]=r11,PT(CR_IIP)-PT(R11) // save r11 tnat.nz p9,p0=in1 (pKStk) mov r18=r0 // make sure r18 isn't NaT ;; st8 [r16]=r26,PT(CR_IFS)-PT(AR_PFS) // save ar.pfs st8 [r17]=r28,PT(AR_UNAT)-PT(CR_IIP) // save cr.iip mov r28=b0 // save b0 (2 cyc) ;; st8 [r17]=r25,PT(AR_RSC)-PT(AR_UNAT) // save ar.unat dep r19=0,r19,38,26 // clear all bits but 0..37 [I0] (p8) mov in0=-1 ;; st8 [r16]=r19,PT(AR_RNAT)-PT(CR_IFS) // store ar.pfs.pfm in cr.ifs extr.u r11=r19,7,7 // I0 // get sol of ar.pfs and r8=0x7f,r19 // A // get sof of ar.pfs st8 [r17]=r27,PT(AR_BSPSTORE)-PT(AR_RSC)// save ar.rsc tbit.nz p15,p0=r29,IA64_PSR_I_BIT // I0 (p9) mov in1=-1 ;; (pUStk) sub r18=r18,r22 // r18=RSE.ndirty*8 tnat.nz p10,p0=in2 add r11=8,r11 ;; (pKStk) adds r16=PT(PR)-PT(AR_RNAT),r16 // skip over ar_rnat field (pKStk) adds r17=PT(B0)-PT(AR_BSPSTORE),r17 // skip over ar_bspstore field tnat.nz p11,p0=in3 ;; (p10) mov in2=-1 tnat.nz p12,p0=in4 // [I0] (p11) mov in3=-1 ;; (pUStk) st8 [r16]=r24,PT(PR)-PT(AR_RNAT) // save ar.rnat (pUStk) st8 [r17]=r23,PT(B0)-PT(AR_BSPSTORE) // save ar.bspstore shl r18=r18,16 // compute ar.rsc to be used for "loadrs" ;; st8 [r16]=r31,PT(LOADRS)-PT(PR) // save predicates st8 [r17]=r28,PT(R1)-PT(B0) // save b0 tnat.nz p13,p0=in5 // [I0] ;; st8 [r16]=r18,PT(R12)-PT(LOADRS) // save ar.rsc value for "loadrs" st8.spill [r17]=r20,PT(R13)-PT(R1) // save original r1 (p12) mov in4=-1 ;; .mem.offset 0,0; st8.spill [r16]=r12,PT(AR_FPSR)-PT(R12) // save r12 .mem.offset 8,0; st8.spill [r17]=r13,PT(R15)-PT(R13) // save r13 (p13) mov in5=-1 ;; st8 [r16]=r21,PT(R8)-PT(AR_FPSR) // save ar.fpsr tnat.nz p13,p0=in6 cmp.lt p10,p9=r11,r8 // frame size can't be more than local+8 ;; mov r8=1 (p9) tnat.nz p10,p0=r15 adds r12=-16,r1 // switch to kernel memory stack (with 16 bytes of scratch) st8.spill [r17]=r15 // save r15 tnat.nz p8,p0=in7 nop.i 0 mov r13=r2 // establish `current' movl r1=__gp // establish kernel global pointer ;; st8 [r16]=r8 // ensure pt_regs.r8 != 0 (see handle_syscall_error) (p13) mov in6=-1 (p8) mov in7=-1 cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0 movl r17=FPSR_DEFAULT ;; mov.m ar.fpsr=r17 // set ar.fpsr to kernel default value (p10) mov r8=-EINVAL br.ret.sptk.many b7 END(ia64_syscall_setup) #else /* * There is no particular reason for this code to be here, other * than that there happens to be space here that would go unused * otherwise. If this fault ever gets "unreserved", simply move * the following code to a more suitable spot... * * ia64_syscall_setup() is a separate subroutine so that it can * allocate stacked registers so it can safely demine any * potential NaT values from the input registers. * * On entry: * - executing on bank 0 or bank 1 register set (doesn't matter) * - r1: stack pointer * - r2: current task pointer * - r3: preserved * - r11: original contents (saved ar.pfs to be saved) * - r12: original contents (sp to be saved) * - r13: original contents (tp to be saved) * - r15: original contents (syscall # to be saved) * - r18: saved bsp (after switching to kernel stack) * - r19: saved b6 * - r20: saved r1 (gp) * - r21: saved ar.fpsr * - r22: kernel's register backing store base (krbs_base) * - r23: saved ar.bspstore * - r24: saved ar.rnat * - r25: saved ar.unat * - r26: saved ar.pfs * - r27: saved ar.rsc * - r28: saved cr.iip * - r29: saved cr.ipsr * - r31: saved pr * - b0: original contents (to be saved) * On exit: * - executing on bank 1 registers * - psr.ic enabled, interrupts restored * - p10: TRUE if syscall is invoked with more than 8 out * registers or r15's Nat is true * - r1: kernel's gp * - r3: preserved (same as on entry) * - r8: -EINVAL if p10 is true * - r12: points to kernel stack * - r13: points to current task * - p15: TRUE if interrupts need to be re-enabled * - ar.fpsr: set to kernel settings */ GLOBAL_ENTRY(ia64_syscall_setup) #ifndef XEN #if PT(B6) != 0 # error This code assumes that b6 is the first field in pt_regs. #endif #endif st8 [r1]=r19 // save b6 add r16=PT(CR_IPSR),r1 // initialize first base pointer add r17=PT(R11),r1 // initialize second base pointer ;; alloc r19=ar.pfs,8,0,0,0 // ensure in0-in7 are writable st8 [r16]=r29,PT(AR_PFS)-PT(CR_IPSR) // save cr.ipsr tnat.nz p8,p0=in0 st8.spill [r17]=r11,PT(CR_IIP)-PT(R11) // save r11 tnat.nz p9,p0=in1 (pKStk) mov r18=r0 // make sure r18 isn't NaT ;; st8 [r16]=r26,PT(CR_IFS)-PT(AR_PFS) // save ar.pfs st8 [r17]=r28,PT(AR_UNAT)-PT(CR_IIP) // save cr.iip mov r28=b0 // save b0 (2 cyc) ;; st8 [r17]=r25,PT(AR_RSC)-PT(AR_UNAT) // save ar.unat dep r19=0,r19,38,26 // clear all bits but 0..37 [I0] (p8) mov in0=-1 ;; st8 [r16]=r19,PT(AR_RNAT)-PT(CR_IFS) // store ar.pfs.pfm in cr.ifs extr.u r11=r19,7,7 // I0 // get sol of ar.pfs and r8=0x7f,r19 // A // get sof of ar.pfs st8 [r17]=r27,PT(AR_BSPSTORE)-PT(AR_RSC)// save ar.rsc tbit.nz p15,p0=r29,IA64_PSR_I_BIT // I0 (p9) mov in1=-1 ;; (pUStk) sub r18=r18,r22 // r18=RSE.ndirty*8 tnat.nz p10,p0=in2 add r11=8,r11 ;; (pKStk) adds r16=PT(PR)-PT(AR_RNAT),r16 // skip over ar_rnat field (pKStk) adds r17=PT(B0)-PT(AR_BSPSTORE),r17 // skip over ar_bspstore field tnat.nz p11,p0=in3 ;; (p10) mov in2=-1 tnat.nz p12,p0=in4 // [I0] (p11) mov in3=-1 ;; (pUStk) st8 [r16]=r24,PT(PR)-PT(AR_RNAT) // save ar.rnat (pUStk) st8 [r17]=r23,PT(B0)-PT(AR_BSPSTORE) // save ar.bspstore shl r18=r18,16 // compute ar.rsc to be used // for "loadrs" ;; st8 [r16]=r31,PT(LOADRS)-PT(PR) // save predicates st8 [r17]=r28,PT(R1)-PT(B0) // save b0 tnat.nz p13,p0=in5 // [I0] ;; st8 [r16]=r18,PT(R12)-PT(LOADRS) // save ar.rsc value for // "loadrs" st8.spill [r17]=r20,PT(R13)-PT(R1) // save original r1 (p12) mov in4=-1 ;; .mem.offset 0,0; st8.spill [r16]=r12,PT(AR_FPSR)-PT(R12) // save r12 .mem.offset 8,0; st8.spill [r17]=r13,PT(R15)-PT(R13) // save r13 (p13) mov in5=-1 ;; st8 [r16]=r21,PT(R8)-PT(AR_FPSR) // save ar.fpsr tnat.nz p14,p0=in6 cmp.lt p10,p9=r11,r8 // frame size can't be more than local+8 ;; stf8 [r16]=f1 // ensure pt_regs.r8 != 0 // (see handle_syscall_error) (p9) tnat.nz p10,p0=r15 adds r12=-16,r1 // switch to kernel memory stack (with 16 // bytes of scratch) st8.spill [r17]=r15 // save r15 tnat.nz p8,p0=in7 nop.i 0 mov r13=r2 // establish `current' movl r1=__gp // establish kernel global pointer ;; (p14) mov in6=-1 (p8) mov in7=-1 nop.i 0 cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0 movl r17=FPSR_DEFAULT ;; mov.m ar.fpsr=r17 // set ar.fpsr to kernel default value (p10) mov r8=-EINVAL br.ret.sptk.many b7 END(ia64_syscall_setup) #endif /* XEN */ .org ia64_ivt+0x3c00 ////////////////////////////////////////////////////////////////////////// // 0x3c00 Entry 15 (size 64 bundles) Reserved DBG_FAULT(15) FAULT(15) #ifndef XEN /* * Squatting in this space ... * * This special case dispatcher for illegal operation faults * allows preserved registers to be modified through a callback * function (asm only) that is handed back from the fault handler * in r8. Up to three arguments can be passed to the callback * function by returning an aggregate with the callback as its * first element, followed by the arguments. */ ENTRY(dispatch_illegal_op_fault) SAVE_MIN_WITH_COVER ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer for SAVE_REST ;; alloc r14=ar.pfs,0,0,1,0 // must be first in insn group mov out0=ar.ec ;; SAVE_REST ;; br.call.sptk.many rp=ia64_illegal_op_fault .ret0: ;; alloc r14=ar.pfs,0,0,3,0 // must be first in insn group mov out0=r9 mov out1=r10 mov out2=r11 movl r15=ia64_leave_kernel ;; mov rp=r15 mov b6=r8 ;; cmp.ne p6,p0=0,r8 (p6) br.call.dpnt.many b6=b6 // call returns to ia64_leave_kernel br.sptk.many ia64_leave_kernel END(dispatch_illegal_op_fault) #endif .org ia64_ivt+0x4000 ////////////////////////////////////////////////////////////////////////// // 0x4000 Entry 16 (size 64 bundles) Reserved DBG_FAULT(16) FAULT(16) #ifdef XEN // There is no particular reason for this code to be here, other // than that there happens to be space here that would go unused // otherwise. If this fault ever gets "unreserved", simply move // the following code to a more suitable spot... ENTRY(dispatch_privop_fault) SAVE_MIN_WITH_COVER ;; alloc r14=ar.pfs,0,0,4,0 // now it's safe (must be first in // insn group!) mov out0=cr.ifa adds out1=16,sp mov out2=cr.isr // FIXME: pity to make this slow access twice mov out3=cr.itir ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption // collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 // br.sptk.many ia64_prepare_handle_privop // TODO: why commented out? br.call.sptk.many b6=ia64_handle_privop END(dispatch_privop_fault) #endif .org ia64_ivt+0x4400 ////////////////////////////////////////////////////////////////////////// // 0x4400 Entry 17 (size 64 bundles) Reserved DBG_FAULT(17) FAULT(17) #ifndef XEN ENTRY(non_syscall) SAVE_MIN_WITH_COVER // There is no particular reason for this code to be here, other // than that there happens to be space here that would go unused // otherwise. If this fault ever gets "unreserved", simply move // the following code to a more suitable spot... alloc r14=ar.pfs,0,0,2,0 mov out0=cr.iim add out1=16,sp adds r3=8,r2 // set up second base pointer for SAVE_REST ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption collection is on ;; (p15) ssm psr.i // restore psr.i movl r15=ia64_leave_kernel ;; SAVE_REST mov rp=r15 ;; br.call.sptk.many b6=ia64_bad_break // avoid WAW on CFM and // ignore return addr END(non_syscall) #endif .org ia64_ivt+0x4800 ////////////////////////////////////////////////////////////////////////// // 0x4800 Entry 18 (size 64 bundles) Reserved DBG_FAULT(18) FAULT(18) #ifndef XEN /* * There is no particular reason for this code to be here, other * than that there happens to be space here that would go unused * otherwise. If this fault ever gets "unreserved", simply move * the following code to a more suitable spot... */ ENTRY(dispatch_unaligned_handler) SAVE_MIN_WITH_COVER ;; alloc r14=ar.pfs,0,0,2,0 // now it's safe (must be first in // insn group!) mov out0=cr.ifa adds out1=16,sp ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption // collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 // br.sptk.many ia64_prepare_handle_unaligned // TODO: why commented out? br.call.sptk.many b6=ia64_handle_unaligned END(dispatch_unaligned_handler) #endif .org ia64_ivt+0x4c00 ////////////////////////////////////////////////////////////////////////// // 0x4c00 Entry 19 (size 64 bundles) Reserved DBG_FAULT(19) FAULT(19) /* * There is no particular reason for this code to be here, other * than that there happens to be space here that would go unused * otherwise. If this fault ever gets "unreserved", simply move * the following code to a more suitable spot... */ GLOBAL_ENTRY(dispatch_to_fault_handler) /* * Input: * psr.ic: off * r19: fault vector number (e.g., 24 for General Exception) * r31: contains saved predicates (pr) */ SAVE_MIN_WITH_COVER_R19 alloc r14=ar.pfs,0,0,5,0 mov out0=r15 mov out1=cr.isr mov out2=cr.ifa mov out3=cr.iim mov out4=cr.itir ;; ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption // collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer for // SAVE_REST ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 br.call.sptk.many b6=ia64_fault END(dispatch_to_fault_handler) // // --- End of long entries, Beginning of short entries // .org ia64_ivt+0x5000 ////////////////////////////////////////////////////////////////////////// // 0x5000 Entry 20 (size 16 bundles) Page Not Present (10,22,49) ENTRY(page_not_present) DBG_FAULT(20) #ifdef XEN FAULT_OR_REFLECT(20) #else mov r16=cr.ifa rsm psr.dt /* * The Linux page fault handler doesn't expect non-present pages * to be in the TLB. Flush the existing entry now, so we meet * that expectation. */ mov r17=PAGE_SHIFT<<2 ;; ptc.l r16,r17 ;; mov r31=pr srlz.d br.sptk.many page_fault #endif END(page_not_present) .org ia64_ivt+0x5100 ////////////////////////////////////////////////////////////////////////// // 0x5100 Entry 21 (size 16 bundles) Key Permission (13,25,52) ENTRY(key_permission) DBG_FAULT(21) #ifdef XEN FAULT_OR_REFLECT(21) #else mov r16=cr.ifa rsm psr.dt mov r31=pr ;; srlz.d br.sptk.many page_fault #endif END(key_permission) .org ia64_ivt+0x5200 ////////////////////////////////////////////////////////////////////////// // 0x5200 Entry 22 (size 16 bundles) Instruction Access Rights (26) ENTRY(iaccess_rights) DBG_FAULT(22) #ifdef XEN FAULT_OR_REFLECT(22) #else mov r16=cr.ifa rsm psr.dt mov r31=pr ;; srlz.d br.sptk.many page_fault #endif END(iaccess_rights) .org ia64_ivt+0x5300 ////////////////////////////////////////////////////////////////////////// // 0x5300 Entry 23 (size 16 bundles) Data Access Rights (14,53) ENTRY(daccess_rights) DBG_FAULT(23) #ifdef XEN mov r31=pr ;; mov r16=cr.isr mov r17=cr.ifa mov r19=23 movl r20=0x5300 br.sptk.many fast_access_reflect ;; #else mov r16=cr.ifa rsm psr.dt mov r31=pr ;; srlz.d br.sptk.many page_fault #endif END(daccess_rights) .org ia64_ivt+0x5400 ////////////////////////////////////////////////////////////////////////// // 0x5400 Entry 24 (size 16 bundles) General Exception (5,32,34,36,38,39) ENTRY(general_exception) DBG_FAULT(24) mov r16=cr.isr mov r31=pr ;; #ifdef XEN cmp4.ge p6,p0=0x20,r16 (p6) br.sptk.many dispatch_privop_fault ;; FAULT_OR_REFLECT(24) #else cmp4.eq p6,p0=0,r16 (p6) br.sptk.many dispatch_illegal_op_fault #endif ;; mov r19=24 // fault number br.sptk.many dispatch_to_fault_handler END(general_exception) .org ia64_ivt+0x5500 ////////////////////////////////////////////////////////////////////////// // 0x5500 Entry 25 (size 16 bundles) Disabled FP-Register (35) ENTRY(disabled_fp_reg) DBG_FAULT(25) #ifdef XEN #if 0 // TODO: can this be removed? mov r20=pr movl r16=0x2000000000000000 movl r17=0x2000000000176b60 mov r18=cr.iip mov r19=rr[r16] movl r22=0xe95d0439 ;; mov pr=r0,-1 ;; cmp.eq p6,p7=r22,r19 ;; (p6) cmp.eq p8,p9=r17,r18 (p8) br.sptk.few floating_panic ;; mov pr=r20,-1 ;; #endif FAULT_OR_REFLECT(25) //floating_panic: // TODO: can this be removed? // br.sptk.many floating_panic ;; #endif rsm psr.dfh // ensure we can access fph ;; srlz.d mov r31=pr mov r19=25 br.sptk.many dispatch_to_fault_handler END(disabled_fp_reg) .org ia64_ivt+0x5600 ////////////////////////////////////////////////////////////////////////// // 0x5600 Entry 26 (size 16 bundles) Nat Consumption (11,23,37,50) ENTRY(nat_consumption) DBG_FAULT(26) #ifdef XEN FAULT_OR_REFLECT(26) #else FAULT(26) #endif END(nat_consumption) .org ia64_ivt+0x5700 ////////////////////////////////////////////////////////////////////////// // 0x5700 Entry 27 (size 16 bundles) Speculation (40) ENTRY(speculation_vector) DBG_FAULT(27) #ifdef XEN // this probably need not reflect... FAULT_OR_REFLECT(27) #else /* * A [f]chk.[as] instruction needs to take the branch to the * recovery code but this part of the architecture is not * implemented in hardware on some CPUs, such as Itanium. Thus, * in general we need to emulate the behavior. IIM contains the * relative target (not yet sign extended). So after sign extending * it we simply add it to IIP. We also need to reset the EI field * of the IPSR to zero, i.e., the slot to restart into. * * cr.imm contains zero_ext(imm21) */ mov r18=cr.iim ;; mov r17=cr.iip shl r18=r18,43 // put sign bit in position (43=64-21) ;; mov r16=cr.ipsr shr r18=r18,39 // sign extend (39=43-4) ;; add r17=r17,r18 // now add the offset ;; mov cr.iip=r17 dep r16=0,r16,41,2 // clear EI ;; mov cr.ipsr=r16 ;; rfi // and go back #endif END(speculation_vector) .org ia64_ivt+0x5800 ////////////////////////////////////////////////////////////////////////// // 0x5800 Entry 28 (size 16 bundles) Reserved DBG_FAULT(28) FAULT(28) .org ia64_ivt+0x5900 ////////////////////////////////////////////////////////////////////////// // 0x5900 Entry 29 (size 16 bundles) Debug (16,28,56) ENTRY(debug_vector) DBG_FAULT(29) #ifdef XEN FAULT_OR_REFLECT(29) #else FAULT(29) #endif END(debug_vector) .org ia64_ivt+0x5a00 ////////////////////////////////////////////////////////////////////////// // 0x5a00 Entry 30 (size 16 bundles) Unaligned Reference (57) ENTRY(unaligned_access) DBG_FAULT(30) #ifdef XEN FAULT_OR_REFLECT(30) #else mov r16=cr.ipsr mov r31=pr // prepare to save predicates ;; br.sptk.many dispatch_unaligned_handler #endif END(unaligned_access) .org ia64_ivt+0x5b00 ////////////////////////////////////////////////////////////////////////// // 0x5b00 Entry 31 (size 16 bundles) Unsupported Data Reference (57) ENTRY(unsupported_data_reference) DBG_FAULT(31) #ifdef XEN FAULT_OR_REFLECT(31) #else FAULT(31) #endif END(unsupported_data_reference) .org ia64_ivt+0x5c00 ////////////////////////////////////////////////////////////////////////// // 0x5c00 Entry 32 (size 16 bundles) Floating-Point Fault (64) ENTRY(floating_point_fault) DBG_FAULT(32) #ifdef XEN FAULT_OR_REFLECT(32) #else FAULT(32) #endif END(floating_point_fault) .org ia64_ivt+0x5d00 ////////////////////////////////////////////////////////////////////////// // 0x5d00 Entry 33 (size 16 bundles) Floating Point Trap (66) ENTRY(floating_point_trap) DBG_FAULT(33) #ifdef XEN FAULT_OR_REFLECT(33) #else FAULT(33) #endif END(floating_point_trap) .org ia64_ivt+0x5e00 ////////////////////////////////////////////////////////////////////////// // 0x5e00 Entry 34 (size 16 bundles) Lower Privilege Transfer Trap (66) ENTRY(lower_privilege_trap) DBG_FAULT(34) #ifdef XEN FAULT_OR_REFLECT(34) #else FAULT(34) #endif END(lower_privilege_trap) .org ia64_ivt+0x5f00 ////////////////////////////////////////////////////////////////////////// // 0x5f00 Entry 35 (size 16 bundles) Taken Branch Trap (68) ENTRY(taken_branch_trap) DBG_FAULT(35) #ifdef XEN FAULT_OR_REFLECT(35) #else FAULT(35) #endif END(taken_branch_trap) .org ia64_ivt+0x6000 ////////////////////////////////////////////////////////////////////////// // 0x6000 Entry 36 (size 16 bundles) Single Step Trap (69) ENTRY(single_step_trap) DBG_FAULT(36) #ifdef XEN FAULT_OR_REFLECT(36) #else FAULT(36) #endif END(single_step_trap) .org ia64_ivt+0x6100 ////////////////////////////////////////////////////////////////////////// // 0x6100 Entry 37 (size 16 bundles) Reserved DBG_FAULT(37) FAULT(37) .org ia64_ivt+0x6200 ////////////////////////////////////////////////////////////////////////// // 0x6200 Entry 38 (size 16 bundles) Reserved DBG_FAULT(38) FAULT(38) .org ia64_ivt+0x6300 ////////////////////////////////////////////////////////////////////////// // 0x6300 Entry 39 (size 16 bundles) Reserved DBG_FAULT(39) FAULT(39) .org ia64_ivt+0x6400 ////////////////////////////////////////////////////////////////////////// // 0x6400 Entry 40 (size 16 bundles) Reserved DBG_FAULT(40) FAULT(40) .org ia64_ivt+0x6500 ////////////////////////////////////////////////////////////////////////// // 0x6500 Entry 41 (size 16 bundles) Reserved DBG_FAULT(41) FAULT(41) .org ia64_ivt+0x6600 ////////////////////////////////////////////////////////////////////////// // 0x6600 Entry 42 (size 16 bundles) Reserved DBG_FAULT(42) FAULT(42) .org ia64_ivt+0x6700 ////////////////////////////////////////////////////////////////////////// // 0x6700 Entry 43 (size 16 bundles) Reserved DBG_FAULT(43) FAULT(43) .org ia64_ivt+0x6800 ////////////////////////////////////////////////////////////////////////// // 0x6800 Entry 44 (size 16 bundles) Reserved DBG_FAULT(44) FAULT(44) .org ia64_ivt+0x6900 ////////////////////////////////////////////////////////////////////////// // 0x6900 Entry 45 (size 16 bundles) IA-32 Exeception (17,18,29,41,42,43, // 44,58,60,61,62,72, // 73,75,76,77) ENTRY(ia32_exception) DBG_FAULT(45) #ifdef XEN FAULT_OR_REFLECT(45) #else FAULT(45) #endif END(ia32_exception) .org ia64_ivt+0x6a00 ////////////////////////////////////////////////////////////////////////// // 0x6a00 Entry 46 (size 16 bundles) IA-32 Intercept (30,31,59,70,71) ENTRY(ia32_intercept) DBG_FAULT(46) #ifdef XEN FAULT_OR_REFLECT(46) #else #ifdef CONFIG_IA32_SUPPORT mov r31=pr mov r16=cr.isr ;; extr.u r17=r16,16,8 // get ISR.code mov r18=ar.eflag mov r19=cr.iim // old eflag value ;; cmp.ne p6,p0=2,r17 (p6) br.cond.spnt 1f // not a system flag fault xor r16=r18,r19 ;; extr.u r17=r16,18,1 // get the eflags.ac bit ;; cmp.eq p6,p0=0,r17 (p6) br.cond.spnt 1f // eflags.ac bit didn't change ;; mov pr=r31,-1 // restore predicate registers rfi 1: #endif // CONFIG_IA32_SUPPORT FAULT(46) #endif END(ia32_intercept) .org ia64_ivt+0x6b00 ////////////////////////////////////////////////////////////////////////// // 0x6b00 Entry 47 (size 16 bundles) IA-32 Interrupt (74) ENTRY(ia32_interrupt) DBG_FAULT(47) #ifdef XEN FAULT_OR_REFLECT(47) #else #ifdef CONFIG_IA32_SUPPORT mov r31=pr br.sptk.many dispatch_to_ia32_handler #else FAULT(47) #endif #endif END(ia32_interrupt) .org ia64_ivt+0x6c00 ////////////////////////////////////////////////////////////////////////// // 0x6c00 Entry 48 (size 16 bundles) Reserved DBG_FAULT(48) FAULT(48) .org ia64_ivt+0x6d00 ////////////////////////////////////////////////////////////////////////// // 0x6d00 Entry 49 (size 16 bundles) Reserved DBG_FAULT(49) FAULT(49) .org ia64_ivt+0x6e00 ////////////////////////////////////////////////////////////////////////// // 0x6e00 Entry 50 (size 16 bundles) Reserved DBG_FAULT(50) FAULT(50) .org ia64_ivt+0x6f00 ////////////////////////////////////////////////////////////////////////// // 0x6f00 Entry 51 (size 16 bundles) Reserved DBG_FAULT(51) FAULT(51) .org ia64_ivt+0x7000 ////////////////////////////////////////////////////////////////////////// // 0x7000 Entry 52 (size 16 bundles) Reserved DBG_FAULT(52) FAULT(52) .org ia64_ivt+0x7100 ////////////////////////////////////////////////////////////////////////// // 0x7100 Entry 53 (size 16 bundles) Reserved DBG_FAULT(53) FAULT(53) .org ia64_ivt+0x7200 ////////////////////////////////////////////////////////////////////////// // 0x7200 Entry 54 (size 16 bundles) Reserved DBG_FAULT(54) FAULT(54) .org ia64_ivt+0x7300 ////////////////////////////////////////////////////////////////////////// // 0x7300 Entry 55 (size 16 bundles) Reserved DBG_FAULT(55) FAULT(55) .org ia64_ivt+0x7400 ////////////////////////////////////////////////////////////////////////// // 0x7400 Entry 56 (size 16 bundles) Reserved DBG_FAULT(56) FAULT(56) .org ia64_ivt+0x7500 ////////////////////////////////////////////////////////////////////////// // 0x7500 Entry 57 (size 16 bundles) Reserved DBG_FAULT(57) FAULT(57) .org ia64_ivt+0x7600 ////////////////////////////////////////////////////////////////////////// // 0x7600 Entry 58 (size 16 bundles) Reserved DBG_FAULT(58) FAULT(58) .org ia64_ivt+0x7700 ////////////////////////////////////////////////////////////////////////// // 0x7700 Entry 59 (size 16 bundles) Reserved DBG_FAULT(59) FAULT(59) .org ia64_ivt+0x7800 ////////////////////////////////////////////////////////////////////////// // 0x7800 Entry 60 (size 16 bundles) Reserved DBG_FAULT(60) FAULT(60) .org ia64_ivt+0x7900 ////////////////////////////////////////////////////////////////////////// // 0x7900 Entry 61 (size 16 bundles) Reserved DBG_FAULT(61) FAULT(61) .org ia64_ivt+0x7a00 ////////////////////////////////////////////////////////////////////////// // 0x7a00 Entry 62 (size 16 bundles) Reserved DBG_FAULT(62) FAULT(62) .org ia64_ivt+0x7b00 ////////////////////////////////////////////////////////////////////////// // 0x7b00 Entry 63 (size 16 bundles) Reserved DBG_FAULT(63) FAULT(63) .org ia64_ivt+0x7c00 ////////////////////////////////////////////////////////////////////////// // 0x7c00 Entry 64 (size 16 bundles) Reserved DBG_FAULT(64) FAULT(64) .org ia64_ivt+0x7d00 ////////////////////////////////////////////////////////////////////////// // 0x7d00 Entry 65 (size 16 bundles) Reserved DBG_FAULT(65) FAULT(65) .org ia64_ivt+0x7e00 ////////////////////////////////////////////////////////////////////////// // 0x7e00 Entry 66 (size 16 bundles) Reserved DBG_FAULT(66) FAULT(66) .org ia64_ivt+0x7f00 ////////////////////////////////////////////////////////////////////////// // 0x7f00 Entry 67 (size 16 bundles) Reserved DBG_FAULT(67) FAULT(67) #ifdef XEN .org ia64_ivt+0x8000 GLOBAL_ENTRY(dispatch_reflection) /* * Input: * psr.ic: off * r19: intr type (offset into ivt, see ia64_int.h) * r31: contains saved predicates (pr) */ SAVE_MIN_WITH_COVER_R19 alloc r14=ar.pfs,0,0,5,0 mov out4=r15 mov out0=cr.ifa adds out1=16,sp mov out2=cr.isr mov out3=cr.iim // mov out3=cr.itir // TODO: why commented out? ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption // collection is on ;; (p15) ssm psr.i // restore psr.i adds r3=8,r2 // set up second base pointer ;; SAVE_REST movl r14=ia64_leave_kernel ;; mov rp=r14 // br.sptk.many ia64_prepare_handle_reflection // TODO: why commented out? br.call.sptk.many b6=ia64_handle_reflection END(dispatch_reflection) #define SAVE_MIN_COVER_DONE DO_SAVE_MIN(,mov r30=cr.ifs,) // same as dispatch_break_fault except cover has already been done GLOBAL_ENTRY(dispatch_slow_hyperprivop) SAVE_MIN_COVER_DONE ;; br.sptk.many dispatch_break_fault_post_save END(dispatch_slow_hyperprivop) #endif #ifdef CONFIG_IA32_SUPPORT /* * There is no particular reason for this code to be here, other * than that there happens to be space here that would go unused * otherwise. If this fault ever gets "unreserved", simply move * the following code to a more suitable spot... */ // IA32 interrupt entry point ENTRY(dispatch_to_ia32_handler) SAVE_MIN ;; mov r14=cr.isr ssm psr.ic | PSR_DEFAULT_BITS ;; srlz.i // guarantee that interruption collection is on ;; (p15) ssm psr.i adds r3=8,r2 // Base pointer for SAVE_REST ;; SAVE_REST ;; mov r15=0x80 shr r14=r14,16 // Get interrupt number ;; cmp.ne p6,p0=r14,r15 (p6) br.call.dpnt.many b6=non_ia32_syscall adds r14=IA64_PT_REGS_R8_OFFSET + 16,sp // 16 byte hole per SW // conventions adds r15=IA64_PT_REGS_R1_OFFSET + 16,sp ;; cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0 ld8 r8=[r14] // get r8 ;; st8 [r15]=r8 // save original EAX in r1 (IA32 procs // don't use the GP) ;; alloc r15=ar.pfs,0,0,6,0 // must be first in an insn group ;; ld4 r8=[r14],8 // r8 == eax (syscall number) mov r15=IA32_NR_syscalls ;; cmp.ltu.unc p6,p7=r8,r15 ld4 out1=[r14],8 // r9 == ecx ;; ld4 out2=[r14],8 // r10 == edx ;; ld4 out0=[r14] // r11 == ebx adds r14=(IA64_PT_REGS_R13_OFFSET) + 16,sp ;; ld4 out5=[r14],PT(R14)-PT(R13) // r13 == ebp ;; ld4 out3=[r14],PT(R15)-PT(R14) // r14 == esi adds r2=TI_FLAGS+IA64_TASK_SIZE,r13 ;; ld4 out4=[r14] // r15 == edi movl r16=ia32_syscall_table ;; (p6) shladd r16=r8,3,r16 // force ni_syscall if not valid syscall number ld4 r2=[r2] // r2 = current_thread_info()->flags ;; ld8 r16=[r16] and r2=_TIF_SYSCALL_TRACEAUDIT,r2 // mask trace or audit ;; mov b6=r16 movl r15=ia32_ret_from_syscall cmp.eq p8,p0=r2,r0 ;; mov rp=r15 (p8) br.call.sptk.many b6=b6 br.cond.sptk ia32_trace_syscall non_ia32_syscall: alloc r15=ar.pfs,0,0,2,0 mov out0=r14 // interrupt # add out1=16,sp // pointer to pt_regs ;; // avoid WAW on CFM br.call.sptk.many rp=ia32_bad_interrupt .ret1: movl r15=ia64_leave_kernel ;; mov rp=r15 br.ret.sptk.many rp END(dispatch_to_ia32_handler) #endif /* CONFIG_IA32_SUPPORT */