source: trunk/packages/xen-common/xen-common/xen/include/asm-ia64/linux-xen/asm/pgtable.h @ 34

Last change on this file since 34 was 34, checked in by hartmans, 17 years ago

Add xen and xen-common

File size: 23.8 KB
Line 
1#ifndef _ASM_IA64_PGTABLE_H
2#define _ASM_IA64_PGTABLE_H
3
4/*
5 * This file contains the functions and defines necessary to modify and use
6 * the IA-64 page table tree.
7 *
8 * This hopefully works with any (fixed) IA-64 page-size, as defined
9 * in <asm/page.h>.
10 *
11 * Copyright (C) 1998-2005 Hewlett-Packard Co
12 *      David Mosberger-Tang <davidm@hpl.hp.com>
13 */
14
15#include <linux/config.h>
16
17#include <asm/mman.h>
18#include <asm/page.h>
19#include <asm/processor.h>
20#include <asm/system.h>
21#include <asm/types.h>
22#ifdef XEN
23#ifndef __ASSEMBLY__
24#include <xen/sched.h> /* needed for mm_struct (via asm/domain.h) */
25#endif
26#endif
27
28#define IA64_MAX_PHYS_BITS      50      /* max. number of physical address bits (architected) */
29
30/*
31 * First, define the various bits in a PTE.  Note that the PTE format
32 * matches the VHPT short format, the firt doubleword of the VHPD long
33 * format, and the first doubleword of the TLB insertion format.
34 */
35#define _PAGE_P_BIT             0
36#define _PAGE_A_BIT             5
37#define _PAGE_D_BIT             6
38
39#define _PAGE_P                 (1 << _PAGE_P_BIT)      /* page present bit */
40#define _PAGE_MA_WB             (0x0 <<  2)     /* write back memory attribute */
41#ifdef XEN
42#define _PAGE_RV1_BIT           1
43#define _PAGE_RV2_BIT           50
44#define _PAGE_RV1               (__IA64_UL(1) << _PAGE_RV1_BIT) /* reserved bit */
45#define _PAGE_RV2               (__IA64_UL(3) << _PAGE_RV2_BIT) /* reserved bits */
46
47#define _PAGE_MA_ST             (0x1 <<  2)     /* is reserved for software use */
48#endif
49#define _PAGE_MA_UC             (0x4 <<  2)     /* uncacheable memory attribute */
50#define _PAGE_MA_UCE            (0x5 <<  2)     /* UC exported attribute */
51#define _PAGE_MA_WC             (0x6 <<  2)     /* write coalescing memory attribute */
52#define _PAGE_MA_NAT            (0x7 <<  2)     /* not-a-thing attribute */
53#define _PAGE_MA_MASK           (0x7 <<  2)
54#define _PAGE_PL_0              (0 <<  7)       /* privilege level 0 (kernel) */
55#define _PAGE_PL_1              (1 <<  7)       /* privilege level 1 (unused) */
56#define _PAGE_PL_2              (2 <<  7)       /* privilege level 2 (unused) */
57#define _PAGE_PL_3              (3 <<  7)       /* privilege level 3 (user) */
58#define _PAGE_PL_MASK           (3 <<  7)
59#define _PAGE_AR_R              (0 <<  9)       /* read only */
60#define _PAGE_AR_RX             (1 <<  9)       /* read & execute */
61#define _PAGE_AR_RW             (2 <<  9)       /* read & write */
62#define _PAGE_AR_RWX            (3 <<  9)       /* read, write & execute */
63#define _PAGE_AR_R_RW           (4 <<  9)       /* read / read & write */
64#define _PAGE_AR_RX_RWX         (5 <<  9)       /* read & exec / read, write & exec */
65#define _PAGE_AR_RWX_RW         (6 <<  9)       /* read, write & exec / read & write */
66#define _PAGE_AR_X_RX           (7 <<  9)       /* exec & promote / read & exec */
67#define _PAGE_AR_MASK           (7 <<  9)
68#define _PAGE_AR_SHIFT          9
69#define _PAGE_A                 (1 << _PAGE_A_BIT)      /* page accessed bit */
70#define _PAGE_D                 (1 << _PAGE_D_BIT)      /* page dirty bit */
71#define _PAGE_PPN_MASK          (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
72#define _PAGE_ED                (__IA64_UL(1) << 52)    /* exception deferral */
73#ifdef XEN
74#define _PAGE_VIRT_D            (__IA64_UL(1) << 53)    /* Virtual dirty bit */
75#define _PAGE_PROTNONE          0
76
77#ifdef CONFIG_XEN_IA64_TLB_TRACK
78#define _PAGE_TLB_TRACKING_BIT          54
79#define _PAGE_TLB_INSERTED_BIT          55
80#define _PAGE_TLB_INSERTED_MANY_BIT     56
81
82#define _PAGE_TLB_TRACKING              (1UL << _PAGE_TLB_TRACKING_BIT)
83#define _PAGE_TLB_INSERTED              (1UL << _PAGE_TLB_INSERTED_BIT)
84#define _PAGE_TLB_INSERTED_MANY         (1UL << _PAGE_TLB_INSERTED_MANY_BIT)
85#define _PAGE_TLB_TRACK_MASK            (_PAGE_TLB_TRACKING |           \
86                                         _PAGE_TLB_INSERTED |           \
87                                         _PAGE_TLB_INSERTED_MANY)
88
89#define pte_tlb_tracking(pte)                           \
90    ((pte_val(pte) & _PAGE_TLB_TRACKING) != 0)
91#define pte_tlb_inserted(pte)                           \
92    ((pte_val(pte) & _PAGE_TLB_INSERTED) != 0)
93#define pte_tlb_inserted_many(pte)                      \
94    ((pte_val(pte) & _PAGE_TLB_INSERTED_MANY) != 0)
95#endif // CONFIG_XEN_IA64_TLB_TRACK
96
97#define _PAGE_PGC_ALLOCATED_BIT 59      /* _PGC_allocated */
98#define _PAGE_PGC_ALLOCATED     (__IA64_UL(1) << _PAGE_PGC_ALLOCATED_BIT)
99/* domVTI */
100#define GPFN_MEM                (0UL << 60)     /* Guest pfn is normal mem */
101#define GPFN_FRAME_BUFFER       (1UL << 60)     /* VGA framebuffer */
102#define GPFN_LOW_MMIO           (2UL << 60)     /* Low MMIO range */
103#define GPFN_PIB                (3UL << 60)     /* PIB base */
104#define GPFN_IOSAPIC            (4UL << 60)     /* IOSAPIC base */
105#define GPFN_LEGACY_IO          (5UL << 60)     /* Legacy I/O base */
106#define GPFN_GFW                (6UL << 60)     /* Guest Firmware */
107#define GPFN_HIGH_MMIO          (7UL << 60)     /* High MMIO range */
108
109#define GPFN_IO_MASK            (7UL << 60)     /* Guest pfn is I/O type */
110#define GPFN_INV_MASK           (1UL << 63)     /* Guest pfn is invalid */
111
112#else
113#define _PAGE_PROTNONE          (__IA64_UL(1) << 63)
114#endif
115
116/* Valid only for a PTE with the present bit cleared: */
117#define _PAGE_FILE              (1 << 1)                /* see swap & file pte remarks below */
118
119#define _PFN_MASK               _PAGE_PPN_MASK
120/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
121#define _PAGE_CHG_MASK  (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
122
123#define _PAGE_SIZE_4K   12
124#define _PAGE_SIZE_8K   13
125#define _PAGE_SIZE_16K  14
126#define _PAGE_SIZE_64K  16
127#define _PAGE_SIZE_256K 18
128#define _PAGE_SIZE_1M   20
129#define _PAGE_SIZE_4M   22
130#define _PAGE_SIZE_16M  24
131#define _PAGE_SIZE_64M  26
132#define _PAGE_SIZE_256M 28
133#define _PAGE_SIZE_1G   30
134#define _PAGE_SIZE_4G   32
135
136#define __ACCESS_BITS           _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
137#define __DIRTY_BITS_NO_ED      _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
138#define __DIRTY_BITS            _PAGE_ED | __DIRTY_BITS_NO_ED
139
140/*
141 * Definitions for first level:
142 *
143 * PGDIR_SHIFT determines what a first-level page table entry can map.
144 */
145#define PGDIR_SHIFT             (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
146#define PGDIR_SIZE              (__IA64_UL(1) << PGDIR_SHIFT)
147#define PGDIR_MASK              (~(PGDIR_SIZE-1))
148#define PTRS_PER_PGD            (1UL << (PAGE_SHIFT-3))
149#define USER_PTRS_PER_PGD       (5*PTRS_PER_PGD/8)      /* regions 0-4 are user regions */
150#define FIRST_USER_ADDRESS      0
151
152/*
153 * Definitions for second level:
154 *
155 * PMD_SHIFT determines the size of the area a second-level page table
156 * can map.
157 */
158#define PMD_SHIFT       (PAGE_SHIFT + (PAGE_SHIFT-3))
159#define PMD_SIZE        (1UL << PMD_SHIFT)
160#define PMD_MASK        (~(PMD_SIZE-1))
161#define PTRS_PER_PMD    (1UL << (PAGE_SHIFT-3))
162
163/*
164 * Definitions for third level:
165 */
166#define PTRS_PER_PTE    (__IA64_UL(1) << (PAGE_SHIFT-3))
167
168/*
169 * All the normal masks have the "page accessed" bits on, as any time
170 * they are used, the page is accessed. They are cleared only by the
171 * page-out routines.
172 */
173#define PAGE_NONE       __pgprot(_PAGE_PROTNONE | _PAGE_A)
174#define PAGE_SHARED     __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
175#define PAGE_READONLY   __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
176#define PAGE_COPY       __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
177#define PAGE_COPY_EXEC  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
178#define PAGE_GATE       __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
179#define PAGE_KERNEL     __pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)
180#define PAGE_KERNELRX   __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
181
182# ifndef __ASSEMBLY__
183
184#include <asm/bitops.h>
185#include <asm/cacheflush.h>
186#include <asm/mmu_context.h>
187#include <asm/processor.h>
188
189/*
190 * Next come the mappings that determine how mmap() protection bits
191 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The
192 * _P version gets used for a private shared memory segment, the _S
193 * version gets used for a shared memory segment with MAP_SHARED on.
194 * In a private shared memory segment, we do a copy-on-write if a task
195 * attempts to write to the page.
196 */
197        /* xwr */
198#define __P000  PAGE_NONE
199#define __P001  PAGE_READONLY
200#define __P010  PAGE_READONLY   /* write to priv pg -> copy & make writable */
201#define __P011  PAGE_READONLY   /* ditto */
202#define __P100  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
203#define __P101  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
204#define __P110  PAGE_COPY_EXEC
205#define __P111  PAGE_COPY_EXEC
206
207#define __S000  PAGE_NONE
208#define __S001  PAGE_READONLY
209#define __S010  PAGE_SHARED     /* we don't have (and don't need) write-only */
210#define __S011  PAGE_SHARED
211#define __S100  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
212#define __S101  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
213#define __S110  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
214#define __S111  __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
215
216#define pgd_ERROR(e)    printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
217#define pmd_ERROR(e)    printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
218#define pte_ERROR(e)    printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
219
220
221/*
222 * Some definitions to translate between mem_map, PTEs, and page addresses:
223 */
224
225
226/* Quick test to see if ADDR is a (potentially) valid physical address. */
227static inline long
228ia64_phys_addr_valid (unsigned long addr)
229{
230        return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
231}
232
233/*
234 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
235 * memory.  For the return value to be meaningful, ADDR must be >=
236 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
237 * require a hash-, or multi-level tree-lookup or something of that
238 * sort) but it guarantees to return TRUE only if accessing the page
239 * at that address does not cause an error.  Note that there may be
240 * addresses for which kern_addr_valid() returns FALSE even though an
241 * access would not cause an error (e.g., this is typically true for
242 * memory mapped I/O regions.
243 *
244 * XXX Need to implement this for IA-64.
245 */
246#define kern_addr_valid(addr)   (1)
247
248
249/*
250 * Now come the defines and routines to manage and access the three-level
251 * page table.
252 */
253
254/*
255 * On some architectures, special things need to be done when setting
256 * the PTE in a page table.  Nothing special needs to be on IA-64.
257 */
258#define set_pte(ptep, pteval)   (*(ptep) = (pteval))
259#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
260#ifdef XEN
261static inline void
262set_pte_rel(volatile pte_t* ptep, pte_t pteval)
263{
264#if CONFIG_SMP
265        asm volatile ("st8.rel [%0]=%1" ::
266                      "r"(&pte_val(*ptep)), "r"(pte_val(pteval)) :
267                      "memory");
268#else
269        set_pte(ptep, pteval);
270#endif
271}
272#endif
273
274#define RGN_SIZE        (1UL << 61)
275#define RGN_KERNEL      7
276
277#define VMALLOC_START           0xa000000200000000UL
278#ifdef CONFIG_VIRTUAL_MEM_MAP
279# define VMALLOC_END_INIT       (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9)))
280# define VMALLOC_END            vmalloc_end
281  extern unsigned long vmalloc_end;
282#else
283# define VMALLOC_END            (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9)))
284#endif
285
286/* fs/proc/kcore.c */
287#define kc_vaddr_to_offset(v) ((v) - 0xa000000000000000UL)
288#define kc_offset_to_vaddr(o) ((o) + 0xa000000000000000UL)
289
290/*
291 * Conversion functions: convert page frame number (pfn) and a protection value to a page
292 * table entry (pte).
293 */
294#define pfn_pte(pfn, pgprot) \
295({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
296
297/* Extract pfn from pte.  */
298#define pte_pfn(_pte)           ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
299
300#define mk_pte(page, pgprot)    pfn_pte(page_to_mfn(page), (pgprot))
301
302/* This takes a physical page address that is used by the remapping functions */
303#define mk_pte_phys(physpage, pgprot) \
304({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
305
306#define pte_modify(_pte, newprot) \
307        (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
308
309#define page_pte_prot(page,prot)        mk_pte(page, prot)
310#define page_pte(page)                  page_pte_prot(page, __pgprot(0))
311
312#define pte_none(pte)                   (!pte_val(pte))
313#define pte_present(pte)                (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
314#define pte_clear(mm,addr,pte)          (pte_val(*(pte)) = 0UL)
315/* pte_page() returns the "struct page *" corresponding to the PTE: */
316#define pte_page(pte)                   virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
317
318#define pmd_none(pmd)                   (!pmd_val(pmd))
319#define pmd_bad(pmd)                    (!ia64_phys_addr_valid(pmd_val(pmd)))
320#define pmd_present(pmd)                (pmd_val(pmd) != 0UL)
321#define pmd_clear(pmdp)                 (pmd_val(*(pmdp)) = 0UL)
322#define pmd_page_kernel(pmd)            ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
323#define pmd_page(pmd)                   virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
324
325#define pud_none(pud)                   (!pud_val(pud))
326#define pud_bad(pud)                    (!ia64_phys_addr_valid(pud_val(pud)))
327#define pud_present(pud)                (pud_val(pud) != 0UL)
328#define pud_clear(pudp)                 (pud_val(*(pudp)) = 0UL)
329
330#define pud_page(pud)                   ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
331
332/*
333 * The following have defined behavior only work if pte_present() is true.
334 */
335#define pte_user(pte)           ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3)
336#define pte_read(pte)           (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6)
337#define pte_write(pte)  ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
338#define pte_exec(pte)           ((pte_val(pte) & _PAGE_AR_RX) != 0)
339#define pte_dirty(pte)          ((pte_val(pte) & _PAGE_D) != 0)
340#define pte_young(pte)          ((pte_val(pte) & _PAGE_A) != 0)
341#define pte_file(pte)           ((pte_val(pte) & _PAGE_FILE) != 0)
342#ifdef XEN
343#define pte_pgc_allocated(pte)  ((pte_val(pte) & _PAGE_PGC_ALLOCATED) != 0)
344#define pte_mem(pte) \
345        (!(pte_val(pte) & (GPFN_IO_MASK | GPFN_INV_MASK)) && !pte_none(pte))
346#endif
347/*
348 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
349 * access rights:
350 */
351#define pte_wrprotect(pte)      (__pte(pte_val(pte) & ~_PAGE_AR_RW))
352#define pte_mkwrite(pte)        (__pte(pte_val(pte) | _PAGE_AR_RW))
353#define pte_mkexec(pte)         (__pte(pte_val(pte) | _PAGE_AR_RX))
354#define pte_mkold(pte)          (__pte(pte_val(pte) & ~_PAGE_A))
355#define pte_mkyoung(pte)        (__pte(pte_val(pte) | _PAGE_A))
356#define pte_mkclean(pte)        (__pte(pte_val(pte) & ~_PAGE_D))
357#define pte_mkdirty(pte)        (__pte(pte_val(pte) | _PAGE_D))
358#define pte_mkhuge(pte)         (__pte(pte_val(pte) | _PAGE_P))
359
360/*
361 * Macro to a page protection value as "uncacheable".  Note that "protection" is really a
362 * misnomer here as the protection value contains the memory attribute bits, dirty bits,
363 * and various other bits as well.
364 */
365#define pgprot_noncached(prot)          __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
366
367/*
368 * Macro to make mark a page protection value as "write-combining".
369 * Note that "protection" is really a misnomer here as the protection
370 * value contains the memory attribute bits, dirty bits, and various
371 * other bits as well.  Accesses through a write-combining translation
372 * works bypasses the caches, but does allow for consecutive writes to
373 * be combined into single (but larger) write transactions.
374 */
375#define pgprot_writecombine(prot)       __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
376
377static inline unsigned long
378pgd_index (unsigned long address)
379{
380        unsigned long region = address >> 61;
381        unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
382
383        return (region << (PAGE_SHIFT - 6)) | l1index;
384}
385
386/* The offset in the 1-level directory is given by the 3 region bits
387   (61..63) and the level-1 bits.  */
388#ifndef XEN
389static inline pgd_t*
390#else
391static inline volatile pgd_t*
392#endif
393pgd_offset (struct mm_struct *mm, unsigned long address)
394{
395        return mm->pgd + pgd_index(address);
396}
397
398/* In the kernel's mapped region we completely ignore the region number
399   (since we know it's in region number 5). */
400#define pgd_offset_k(addr) \
401        (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
402
403/* Look up a pgd entry in the gate area.  On IA-64, the gate-area
404   resides in the kernel-mapped segment, hence we use pgd_offset_k()
405   here.  */
406#define pgd_offset_gate(mm, addr)       pgd_offset_k(addr)
407
408/* Find an entry in the second-level page table.. */
409#ifndef XEN
410#define pmd_offset(dir,addr) \
411        ((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
412#else
413#define pmd_offset(dir,addr) \
414        ((volatile pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
415#endif
416
417/*
418 * Find an entry in the third-level page table.  This looks more complicated than it
419 * should be because some platforms place page tables in high memory.
420 */
421#define pte_index(addr)         (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
422#ifndef XEN
423#define pte_offset_kernel(dir,addr)     ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
424#else
425#define pte_offset_kernel(dir,addr)     ((volatile pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
426#endif
427#define pte_offset_map(dir,addr)        pte_offset_kernel(dir, addr)
428#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr)
429#define pte_unmap(pte)                  do { } while (0)
430#define pte_unmap_nested(pte)           do { } while (0)
431
432#ifndef XEN
433/* atomic versions of the some PTE manipulations: */
434
435static inline int
436ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
437{
438#ifdef CONFIG_SMP
439        if (!pte_young(*ptep))
440                return 0;
441        return test_and_clear_bit(_PAGE_A_BIT, ptep);
442#else
443        pte_t pte = *ptep;
444        if (!pte_young(pte))
445                return 0;
446        set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
447        return 1;
448#endif
449}
450
451static inline int
452ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
453{
454#ifdef CONFIG_SMP
455        if (!pte_dirty(*ptep))
456                return 0;
457        return test_and_clear_bit(_PAGE_D_BIT, ptep);
458#else
459        pte_t pte = *ptep;
460        if (!pte_dirty(pte))
461                return 0;
462        set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
463        return 1;
464#endif
465}
466#endif
467
468#ifdef XEN
469static inline pte_t
470ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
471                   volatile pte_t *ptep)
472#else
473static inline pte_t
474ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
475#endif
476{
477#ifdef CONFIG_SMP
478        return __pte(xchg((long *) ptep, 0));
479#else
480        pte_t pte = *ptep;
481        pte_clear(mm, addr, ptep);
482        return pte;
483#endif
484}
485
486#ifdef XEN
487static inline pte_t
488ptep_xchg(struct mm_struct *mm, unsigned long addr,
489          volatile pte_t *ptep, pte_t npte)
490{
491#ifdef CONFIG_SMP
492        return __pte(xchg((long *) ptep, pte_val(npte)));
493#else
494        pte_t pte = *ptep;
495        set_pte (ptep, npte);
496        return pte;
497#endif
498}
499
500static inline pte_t
501ptep_cmpxchg_rel(struct mm_struct *mm, unsigned long addr,
502                 volatile pte_t *ptep, pte_t old_pte, pte_t new_pte)
503{
504#ifdef CONFIG_SMP
505        return __pte(cmpxchg_rel(&pte_val(*ptep),
506                                 pte_val(old_pte), pte_val(new_pte)));
507#else
508        pte_t pte = *ptep;
509        if (pte_val(pte) == pte_val(old_pte)) {
510                set_pte(ptep, new_pte);
511        }
512        return pte;
513#endif
514}
515#endif
516
517#ifndef XEN
518static inline void
519ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
520{
521#ifdef CONFIG_SMP
522        unsigned long new, old;
523
524        do {
525                old = pte_val(*ptep);
526                new = pte_val(pte_wrprotect(__pte (old)));
527        } while (cmpxchg((unsigned long *) ptep, old, new) != old);
528#else
529        pte_t old_pte = *ptep;
530        set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
531#endif
532}
533
534static inline int
535pte_same (pte_t a, pte_t b)
536{
537        return pte_val(a) == pte_val(b);
538}
539
540#define update_mmu_cache(vma, address, pte) do { } while (0)
541#endif /* XEN */
542
543extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
544extern void paging_init (void);
545
546/*
547 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
548 *       bits in the swap-type field of the swap pte.  It would be nice to
549 *       enforce that, but we can't easily include <linux/swap.h> here.
550 *       (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
551 *
552 * Format of swap pte:
553 *      bit   0   : present bit (must be zero)
554 *      bit   1   : _PAGE_FILE (must be zero)
555 *      bits  2- 8: swap-type
556 *      bits  9-62: swap offset
557 *      bit  63   : _PAGE_PROTNONE bit
558 *
559 * Format of file pte:
560 *      bit   0   : present bit (must be zero)
561 *      bit   1   : _PAGE_FILE (must be one)
562 *      bits  2-62: file_offset/PAGE_SIZE
563 *      bit  63   : _PAGE_PROTNONE bit
564 */
565#define __swp_type(entry)               (((entry).val >> 2) & 0x7f)
566#define __swp_offset(entry)             (((entry).val << 1) >> 10)
567#define __swp_entry(type,offset)        ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
568#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
569#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
570
571#define PTE_FILE_MAX_BITS               61
572#define pte_to_pgoff(pte)               ((pte_val(pte) << 1) >> 3)
573#define pgoff_to_pte(off)               ((pte_t) { ((off) << 2) | _PAGE_FILE })
574
575/* XXX is this right? */
576#define io_remap_page_range(vma, vaddr, paddr, size, prot)              \
577                remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
578
579#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
580                remap_pfn_range(vma, vaddr, pfn, size, prot)
581
582#define MK_IOSPACE_PFN(space, pfn)      (pfn)
583#define GET_IOSPACE(pfn)                0
584#define GET_PFN(pfn)                    (pfn)
585
586/*
587 * ZERO_PAGE is a global shared page that is always zero: used
588 * for zero-mapped memory areas etc..
589 */
590extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
591#ifndef XEN
592extern struct page *zero_page_memmap_ptr;
593#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
594#endif
595
596/* We provide our own get_unmapped_area to cope with VA holes for userland */
597#define HAVE_ARCH_UNMAPPED_AREA
598
599#ifdef CONFIG_HUGETLB_PAGE
600#define HUGETLB_PGDIR_SHIFT     (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
601#define HUGETLB_PGDIR_SIZE      (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
602#define HUGETLB_PGDIR_MASK      (~(HUGETLB_PGDIR_SIZE-1))
603struct mmu_gather;
604void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
605                unsigned long end, unsigned long floor, unsigned long ceiling);
606#endif
607
608/*
609 * IA-64 doesn't have any external MMU info: the page tables contain all the necessary
610 * information.  However, we use this routine to take care of any (delayed) i-cache
611 * flushing that may be necessary.
612 */
613extern void lazy_mmu_prot_update (pte_t pte);
614
615#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
616/*
617 * Update PTEP with ENTRY, which is guaranteed to be a less
618 * restrictive PTE.  That is, ENTRY may have the ACCESSED, DIRTY, and
619 * WRITABLE bits turned on, when the value at PTEP did not.  The
620 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
621 *
622 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
623 * having to worry about races.  On SMP machines, there are only two
624 * cases where this is true:
625 *
626 *      (1) *PTEP has the PRESENT bit turned OFF
627 *      (2) ENTRY has the DIRTY bit turned ON
628 *
629 * On ia64, we could implement this routine with a cmpxchg()-loop
630 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
631 * However, like on x86, we can get a more streamlined version by
632 * observing that it is OK to drop ACCESSED bit updates when
633 * SAFELY_WRITABLE is FALSE.  Besides being rare, all that would do is
634 * result in an extra Access-bit fault, which would then turn on the
635 * ACCESSED bit in the low-level fault handler (iaccess_bit or
636 * daccess_bit in ivt.S).
637 */
638#ifdef CONFIG_SMP
639# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable)       \
640do {                                                                                    \
641        if (__safely_writable) {                                                        \
642                set_pte(__ptep, __entry);                                               \
643                flush_tlb_page(__vma, __addr);                                          \
644        }                                                                               \
645} while (0)
646#else
647# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable)       \
648        ptep_establish(__vma, __addr, __ptep, __entry)
649#endif
650
651#  ifdef CONFIG_VIRTUAL_MEM_MAP
652  /* arch mem_map init routine is needed due to holes in a virtual mem_map */
653#   define __HAVE_ARCH_MEMMAP_INIT
654    extern void memmap_init (unsigned long size, int nid, unsigned long zone,
655                             unsigned long start_pfn);
656#  endif /* CONFIG_VIRTUAL_MEM_MAP */
657# endif /* !__ASSEMBLY__ */
658
659/*
660 * Identity-mapped regions use a large page size.  We'll call such large pages
661 * "granules".  If you can think of a better name that's unambiguous, let me
662 * know...
663 */
664#if defined(CONFIG_IA64_GRANULE_64MB)
665# define IA64_GRANULE_SHIFT     _PAGE_SIZE_64M
666#elif defined(CONFIG_IA64_GRANULE_16MB)
667# define IA64_GRANULE_SHIFT     _PAGE_SIZE_16M
668#endif
669#define IA64_GRANULE_SIZE       (1 << IA64_GRANULE_SHIFT)
670/*
671 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
672 */
673#define KERNEL_TR_PAGE_SHIFT    _PAGE_SIZE_64M
674#define KERNEL_TR_PAGE_SIZE     (1 << KERNEL_TR_PAGE_SHIFT)
675
676/*
677 * No page table caches to initialise
678 */
679#define pgtable_cache_init()    do { } while (0)
680
681/* These tell get_user_pages() that the first gate page is accessible from user-level.  */
682#define FIXADDR_USER_START      GATE_ADDR
683#ifdef HAVE_BUGGY_SEGREL
684# define FIXADDR_USER_END       (GATE_ADDR + 2*PAGE_SIZE)
685#else
686# define FIXADDR_USER_END       (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
687#endif
688
689#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
690#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
691#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
692#define __HAVE_ARCH_PTEP_SET_WRPROTECT
693#define __HAVE_ARCH_PTE_SAME
694#define __HAVE_ARCH_PGD_OFFSET_GATE
695#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
696
697#include <asm-generic/pgtable-nopud.h>
698#include <asm-generic/pgtable.h>
699
700#endif /* _ASM_IA64_PGTABLE_H */
Note: See TracBrowser for help on using the repository browser.