1 | #ifndef _ASM_IA64_PGTABLE_H |
---|
2 | #define _ASM_IA64_PGTABLE_H |
---|
3 | |
---|
4 | /* |
---|
5 | * This file contains the functions and defines necessary to modify and use |
---|
6 | * the IA-64 page table tree. |
---|
7 | * |
---|
8 | * This hopefully works with any (fixed) IA-64 page-size, as defined |
---|
9 | * in <asm/page.h>. |
---|
10 | * |
---|
11 | * Copyright (C) 1998-2005 Hewlett-Packard Co |
---|
12 | * David Mosberger-Tang <davidm@hpl.hp.com> |
---|
13 | */ |
---|
14 | |
---|
15 | #include <linux/config.h> |
---|
16 | |
---|
17 | #include <asm/mman.h> |
---|
18 | #include <asm/page.h> |
---|
19 | #include <asm/processor.h> |
---|
20 | #include <asm/system.h> |
---|
21 | #include <asm/types.h> |
---|
22 | #ifdef XEN |
---|
23 | #ifndef __ASSEMBLY__ |
---|
24 | #include <xen/sched.h> /* needed for mm_struct (via asm/domain.h) */ |
---|
25 | #endif |
---|
26 | #endif |
---|
27 | |
---|
28 | #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ |
---|
29 | |
---|
30 | /* |
---|
31 | * First, define the various bits in a PTE. Note that the PTE format |
---|
32 | * matches the VHPT short format, the firt doubleword of the VHPD long |
---|
33 | * format, and the first doubleword of the TLB insertion format. |
---|
34 | */ |
---|
35 | #define _PAGE_P_BIT 0 |
---|
36 | #define _PAGE_A_BIT 5 |
---|
37 | #define _PAGE_D_BIT 6 |
---|
38 | |
---|
39 | #define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ |
---|
40 | #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ |
---|
41 | #ifdef XEN |
---|
42 | #define _PAGE_RV1_BIT 1 |
---|
43 | #define _PAGE_RV2_BIT 50 |
---|
44 | #define _PAGE_RV1 (__IA64_UL(1) << _PAGE_RV1_BIT) /* reserved bit */ |
---|
45 | #define _PAGE_RV2 (__IA64_UL(3) << _PAGE_RV2_BIT) /* reserved bits */ |
---|
46 | |
---|
47 | #define _PAGE_MA_ST (0x1 << 2) /* is reserved for software use */ |
---|
48 | #endif |
---|
49 | #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ |
---|
50 | #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ |
---|
51 | #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ |
---|
52 | #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ |
---|
53 | #define _PAGE_MA_MASK (0x7 << 2) |
---|
54 | #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ |
---|
55 | #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ |
---|
56 | #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ |
---|
57 | #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ |
---|
58 | #define _PAGE_PL_MASK (3 << 7) |
---|
59 | #define _PAGE_AR_R (0 << 9) /* read only */ |
---|
60 | #define _PAGE_AR_RX (1 << 9) /* read & execute */ |
---|
61 | #define _PAGE_AR_RW (2 << 9) /* read & write */ |
---|
62 | #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ |
---|
63 | #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ |
---|
64 | #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ |
---|
65 | #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ |
---|
66 | #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ |
---|
67 | #define _PAGE_AR_MASK (7 << 9) |
---|
68 | #define _PAGE_AR_SHIFT 9 |
---|
69 | #define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ |
---|
70 | #define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ |
---|
71 | #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) |
---|
72 | #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ |
---|
73 | #ifdef XEN |
---|
74 | #define _PAGE_VIRT_D (__IA64_UL(1) << 53) /* Virtual dirty bit */ |
---|
75 | #define _PAGE_PROTNONE 0 |
---|
76 | |
---|
77 | #ifdef CONFIG_XEN_IA64_TLB_TRACK |
---|
78 | #define _PAGE_TLB_TRACKING_BIT 54 |
---|
79 | #define _PAGE_TLB_INSERTED_BIT 55 |
---|
80 | #define _PAGE_TLB_INSERTED_MANY_BIT 56 |
---|
81 | |
---|
82 | #define _PAGE_TLB_TRACKING (1UL << _PAGE_TLB_TRACKING_BIT) |
---|
83 | #define _PAGE_TLB_INSERTED (1UL << _PAGE_TLB_INSERTED_BIT) |
---|
84 | #define _PAGE_TLB_INSERTED_MANY (1UL << _PAGE_TLB_INSERTED_MANY_BIT) |
---|
85 | #define _PAGE_TLB_TRACK_MASK (_PAGE_TLB_TRACKING | \ |
---|
86 | _PAGE_TLB_INSERTED | \ |
---|
87 | _PAGE_TLB_INSERTED_MANY) |
---|
88 | |
---|
89 | #define pte_tlb_tracking(pte) \ |
---|
90 | ((pte_val(pte) & _PAGE_TLB_TRACKING) != 0) |
---|
91 | #define pte_tlb_inserted(pte) \ |
---|
92 | ((pte_val(pte) & _PAGE_TLB_INSERTED) != 0) |
---|
93 | #define pte_tlb_inserted_many(pte) \ |
---|
94 | ((pte_val(pte) & _PAGE_TLB_INSERTED_MANY) != 0) |
---|
95 | #endif // CONFIG_XEN_IA64_TLB_TRACK |
---|
96 | |
---|
97 | #define _PAGE_PGC_ALLOCATED_BIT 59 /* _PGC_allocated */ |
---|
98 | #define _PAGE_PGC_ALLOCATED (__IA64_UL(1) << _PAGE_PGC_ALLOCATED_BIT) |
---|
99 | /* domVTI */ |
---|
100 | #define GPFN_MEM (0UL << 60) /* Guest pfn is normal mem */ |
---|
101 | #define GPFN_FRAME_BUFFER (1UL << 60) /* VGA framebuffer */ |
---|
102 | #define GPFN_LOW_MMIO (2UL << 60) /* Low MMIO range */ |
---|
103 | #define GPFN_PIB (3UL << 60) /* PIB base */ |
---|
104 | #define GPFN_IOSAPIC (4UL << 60) /* IOSAPIC base */ |
---|
105 | #define GPFN_LEGACY_IO (5UL << 60) /* Legacy I/O base */ |
---|
106 | #define GPFN_GFW (6UL << 60) /* Guest Firmware */ |
---|
107 | #define GPFN_HIGH_MMIO (7UL << 60) /* High MMIO range */ |
---|
108 | |
---|
109 | #define GPFN_IO_MASK (7UL << 60) /* Guest pfn is I/O type */ |
---|
110 | #define GPFN_INV_MASK (1UL << 63) /* Guest pfn is invalid */ |
---|
111 | |
---|
112 | #else |
---|
113 | #define _PAGE_PROTNONE (__IA64_UL(1) << 63) |
---|
114 | #endif |
---|
115 | |
---|
116 | /* Valid only for a PTE with the present bit cleared: */ |
---|
117 | #define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ |
---|
118 | |
---|
119 | #define _PFN_MASK _PAGE_PPN_MASK |
---|
120 | /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ |
---|
121 | #define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) |
---|
122 | |
---|
123 | #define _PAGE_SIZE_4K 12 |
---|
124 | #define _PAGE_SIZE_8K 13 |
---|
125 | #define _PAGE_SIZE_16K 14 |
---|
126 | #define _PAGE_SIZE_64K 16 |
---|
127 | #define _PAGE_SIZE_256K 18 |
---|
128 | #define _PAGE_SIZE_1M 20 |
---|
129 | #define _PAGE_SIZE_4M 22 |
---|
130 | #define _PAGE_SIZE_16M 24 |
---|
131 | #define _PAGE_SIZE_64M 26 |
---|
132 | #define _PAGE_SIZE_256M 28 |
---|
133 | #define _PAGE_SIZE_1G 30 |
---|
134 | #define _PAGE_SIZE_4G 32 |
---|
135 | |
---|
136 | #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB |
---|
137 | #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB |
---|
138 | #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED |
---|
139 | |
---|
140 | /* |
---|
141 | * Definitions for first level: |
---|
142 | * |
---|
143 | * PGDIR_SHIFT determines what a first-level page table entry can map. |
---|
144 | */ |
---|
145 | #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) |
---|
146 | #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) |
---|
147 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
---|
148 | #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) |
---|
149 | #define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ |
---|
150 | #define FIRST_USER_ADDRESS 0 |
---|
151 | |
---|
152 | /* |
---|
153 | * Definitions for second level: |
---|
154 | * |
---|
155 | * PMD_SHIFT determines the size of the area a second-level page table |
---|
156 | * can map. |
---|
157 | */ |
---|
158 | #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) |
---|
159 | #define PMD_SIZE (1UL << PMD_SHIFT) |
---|
160 | #define PMD_MASK (~(PMD_SIZE-1)) |
---|
161 | #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) |
---|
162 | |
---|
163 | /* |
---|
164 | * Definitions for third level: |
---|
165 | */ |
---|
166 | #define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3)) |
---|
167 | |
---|
168 | /* |
---|
169 | * All the normal masks have the "page accessed" bits on, as any time |
---|
170 | * they are used, the page is accessed. They are cleared only by the |
---|
171 | * page-out routines. |
---|
172 | */ |
---|
173 | #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) |
---|
174 | #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) |
---|
175 | #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) |
---|
176 | #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) |
---|
177 | #define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) |
---|
178 | #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) |
---|
179 | #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) |
---|
180 | #define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) |
---|
181 | |
---|
182 | # ifndef __ASSEMBLY__ |
---|
183 | |
---|
184 | #include <asm/bitops.h> |
---|
185 | #include <asm/cacheflush.h> |
---|
186 | #include <asm/mmu_context.h> |
---|
187 | #include <asm/processor.h> |
---|
188 | |
---|
189 | /* |
---|
190 | * Next come the mappings that determine how mmap() protection bits |
---|
191 | * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The |
---|
192 | * _P version gets used for a private shared memory segment, the _S |
---|
193 | * version gets used for a shared memory segment with MAP_SHARED on. |
---|
194 | * In a private shared memory segment, we do a copy-on-write if a task |
---|
195 | * attempts to write to the page. |
---|
196 | */ |
---|
197 | /* xwr */ |
---|
198 | #define __P000 PAGE_NONE |
---|
199 | #define __P001 PAGE_READONLY |
---|
200 | #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ |
---|
201 | #define __P011 PAGE_READONLY /* ditto */ |
---|
202 | #define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) |
---|
203 | #define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) |
---|
204 | #define __P110 PAGE_COPY_EXEC |
---|
205 | #define __P111 PAGE_COPY_EXEC |
---|
206 | |
---|
207 | #define __S000 PAGE_NONE |
---|
208 | #define __S001 PAGE_READONLY |
---|
209 | #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ |
---|
210 | #define __S011 PAGE_SHARED |
---|
211 | #define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) |
---|
212 | #define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) |
---|
213 | #define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) |
---|
214 | #define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) |
---|
215 | |
---|
216 | #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) |
---|
217 | #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) |
---|
218 | #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) |
---|
219 | |
---|
220 | |
---|
221 | /* |
---|
222 | * Some definitions to translate between mem_map, PTEs, and page addresses: |
---|
223 | */ |
---|
224 | |
---|
225 | |
---|
226 | /* Quick test to see if ADDR is a (potentially) valid physical address. */ |
---|
227 | static inline long |
---|
228 | ia64_phys_addr_valid (unsigned long addr) |
---|
229 | { |
---|
230 | return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; |
---|
231 | } |
---|
232 | |
---|
233 | /* |
---|
234 | * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel |
---|
235 | * memory. For the return value to be meaningful, ADDR must be >= |
---|
236 | * PAGE_OFFSET. This operation can be relatively expensive (e.g., |
---|
237 | * require a hash-, or multi-level tree-lookup or something of that |
---|
238 | * sort) but it guarantees to return TRUE only if accessing the page |
---|
239 | * at that address does not cause an error. Note that there may be |
---|
240 | * addresses for which kern_addr_valid() returns FALSE even though an |
---|
241 | * access would not cause an error (e.g., this is typically true for |
---|
242 | * memory mapped I/O regions. |
---|
243 | * |
---|
244 | * XXX Need to implement this for IA-64. |
---|
245 | */ |
---|
246 | #define kern_addr_valid(addr) (1) |
---|
247 | |
---|
248 | |
---|
249 | /* |
---|
250 | * Now come the defines and routines to manage and access the three-level |
---|
251 | * page table. |
---|
252 | */ |
---|
253 | |
---|
254 | /* |
---|
255 | * On some architectures, special things need to be done when setting |
---|
256 | * the PTE in a page table. Nothing special needs to be on IA-64. |
---|
257 | */ |
---|
258 | #define set_pte(ptep, pteval) (*(ptep) = (pteval)) |
---|
259 | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
---|
260 | #ifdef XEN |
---|
261 | static inline void |
---|
262 | set_pte_rel(volatile pte_t* ptep, pte_t pteval) |
---|
263 | { |
---|
264 | #if CONFIG_SMP |
---|
265 | asm volatile ("st8.rel [%0]=%1" :: |
---|
266 | "r"(&pte_val(*ptep)), "r"(pte_val(pteval)) : |
---|
267 | "memory"); |
---|
268 | #else |
---|
269 | set_pte(ptep, pteval); |
---|
270 | #endif |
---|
271 | } |
---|
272 | #endif |
---|
273 | |
---|
274 | #define RGN_SIZE (1UL << 61) |
---|
275 | #define RGN_KERNEL 7 |
---|
276 | |
---|
277 | #define VMALLOC_START 0xa000000200000000UL |
---|
278 | #ifdef CONFIG_VIRTUAL_MEM_MAP |
---|
279 | # define VMALLOC_END_INIT (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9))) |
---|
280 | # define VMALLOC_END vmalloc_end |
---|
281 | extern unsigned long vmalloc_end; |
---|
282 | #else |
---|
283 | # define VMALLOC_END (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9))) |
---|
284 | #endif |
---|
285 | |
---|
286 | /* fs/proc/kcore.c */ |
---|
287 | #define kc_vaddr_to_offset(v) ((v) - 0xa000000000000000UL) |
---|
288 | #define kc_offset_to_vaddr(o) ((o) + 0xa000000000000000UL) |
---|
289 | |
---|
290 | /* |
---|
291 | * Conversion functions: convert page frame number (pfn) and a protection value to a page |
---|
292 | * table entry (pte). |
---|
293 | */ |
---|
294 | #define pfn_pte(pfn, pgprot) \ |
---|
295 | ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) |
---|
296 | |
---|
297 | /* Extract pfn from pte. */ |
---|
298 | #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) |
---|
299 | |
---|
300 | #define mk_pte(page, pgprot) pfn_pte(page_to_mfn(page), (pgprot)) |
---|
301 | |
---|
302 | /* This takes a physical page address that is used by the remapping functions */ |
---|
303 | #define mk_pte_phys(physpage, pgprot) \ |
---|
304 | ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) |
---|
305 | |
---|
306 | #define pte_modify(_pte, newprot) \ |
---|
307 | (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) |
---|
308 | |
---|
309 | #define page_pte_prot(page,prot) mk_pte(page, prot) |
---|
310 | #define page_pte(page) page_pte_prot(page, __pgprot(0)) |
---|
311 | |
---|
312 | #define pte_none(pte) (!pte_val(pte)) |
---|
313 | #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) |
---|
314 | #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) |
---|
315 | /* pte_page() returns the "struct page *" corresponding to the PTE: */ |
---|
316 | #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) |
---|
317 | |
---|
318 | #define pmd_none(pmd) (!pmd_val(pmd)) |
---|
319 | #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) |
---|
320 | #define pmd_present(pmd) (pmd_val(pmd) != 0UL) |
---|
321 | #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) |
---|
322 | #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) |
---|
323 | #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) |
---|
324 | |
---|
325 | #define pud_none(pud) (!pud_val(pud)) |
---|
326 | #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) |
---|
327 | #define pud_present(pud) (pud_val(pud) != 0UL) |
---|
328 | #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) |
---|
329 | |
---|
330 | #define pud_page(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) |
---|
331 | |
---|
332 | /* |
---|
333 | * The following have defined behavior only work if pte_present() is true. |
---|
334 | */ |
---|
335 | #define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3) |
---|
336 | #define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) |
---|
337 | #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) |
---|
338 | #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) |
---|
339 | #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) |
---|
340 | #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) |
---|
341 | #define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) |
---|
342 | #ifdef XEN |
---|
343 | #define pte_pgc_allocated(pte) ((pte_val(pte) & _PAGE_PGC_ALLOCATED) != 0) |
---|
344 | #define pte_mem(pte) \ |
---|
345 | (!(pte_val(pte) & (GPFN_IO_MASK | GPFN_INV_MASK)) && !pte_none(pte)) |
---|
346 | #endif |
---|
347 | /* |
---|
348 | * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the |
---|
349 | * access rights: |
---|
350 | */ |
---|
351 | #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) |
---|
352 | #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) |
---|
353 | #define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX)) |
---|
354 | #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) |
---|
355 | #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) |
---|
356 | #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) |
---|
357 | #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) |
---|
358 | #define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_P)) |
---|
359 | |
---|
360 | /* |
---|
361 | * Macro to a page protection value as "uncacheable". Note that "protection" is really a |
---|
362 | * misnomer here as the protection value contains the memory attribute bits, dirty bits, |
---|
363 | * and various other bits as well. |
---|
364 | */ |
---|
365 | #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) |
---|
366 | |
---|
367 | /* |
---|
368 | * Macro to make mark a page protection value as "write-combining". |
---|
369 | * Note that "protection" is really a misnomer here as the protection |
---|
370 | * value contains the memory attribute bits, dirty bits, and various |
---|
371 | * other bits as well. Accesses through a write-combining translation |
---|
372 | * works bypasses the caches, but does allow for consecutive writes to |
---|
373 | * be combined into single (but larger) write transactions. |
---|
374 | */ |
---|
375 | #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) |
---|
376 | |
---|
377 | static inline unsigned long |
---|
378 | pgd_index (unsigned long address) |
---|
379 | { |
---|
380 | unsigned long region = address >> 61; |
---|
381 | unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); |
---|
382 | |
---|
383 | return (region << (PAGE_SHIFT - 6)) | l1index; |
---|
384 | } |
---|
385 | |
---|
386 | /* The offset in the 1-level directory is given by the 3 region bits |
---|
387 | (61..63) and the level-1 bits. */ |
---|
388 | #ifndef XEN |
---|
389 | static inline pgd_t* |
---|
390 | #else |
---|
391 | static inline volatile pgd_t* |
---|
392 | #endif |
---|
393 | pgd_offset (struct mm_struct *mm, unsigned long address) |
---|
394 | { |
---|
395 | return mm->pgd + pgd_index(address); |
---|
396 | } |
---|
397 | |
---|
398 | /* In the kernel's mapped region we completely ignore the region number |
---|
399 | (since we know it's in region number 5). */ |
---|
400 | #define pgd_offset_k(addr) \ |
---|
401 | (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) |
---|
402 | |
---|
403 | /* Look up a pgd entry in the gate area. On IA-64, the gate-area |
---|
404 | resides in the kernel-mapped segment, hence we use pgd_offset_k() |
---|
405 | here. */ |
---|
406 | #define pgd_offset_gate(mm, addr) pgd_offset_k(addr) |
---|
407 | |
---|
408 | /* Find an entry in the second-level page table.. */ |
---|
409 | #ifndef XEN |
---|
410 | #define pmd_offset(dir,addr) \ |
---|
411 | ((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) |
---|
412 | #else |
---|
413 | #define pmd_offset(dir,addr) \ |
---|
414 | ((volatile pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) |
---|
415 | #endif |
---|
416 | |
---|
417 | /* |
---|
418 | * Find an entry in the third-level page table. This looks more complicated than it |
---|
419 | * should be because some platforms place page tables in high memory. |
---|
420 | */ |
---|
421 | #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
---|
422 | #ifndef XEN |
---|
423 | #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) |
---|
424 | #else |
---|
425 | #define pte_offset_kernel(dir,addr) ((volatile pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) |
---|
426 | #endif |
---|
427 | #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) |
---|
428 | #define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) |
---|
429 | #define pte_unmap(pte) do { } while (0) |
---|
430 | #define pte_unmap_nested(pte) do { } while (0) |
---|
431 | |
---|
432 | #ifndef XEN |
---|
433 | /* atomic versions of the some PTE manipulations: */ |
---|
434 | |
---|
435 | static inline int |
---|
436 | ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
---|
437 | { |
---|
438 | #ifdef CONFIG_SMP |
---|
439 | if (!pte_young(*ptep)) |
---|
440 | return 0; |
---|
441 | return test_and_clear_bit(_PAGE_A_BIT, ptep); |
---|
442 | #else |
---|
443 | pte_t pte = *ptep; |
---|
444 | if (!pte_young(pte)) |
---|
445 | return 0; |
---|
446 | set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); |
---|
447 | return 1; |
---|
448 | #endif |
---|
449 | } |
---|
450 | |
---|
451 | static inline int |
---|
452 | ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
---|
453 | { |
---|
454 | #ifdef CONFIG_SMP |
---|
455 | if (!pte_dirty(*ptep)) |
---|
456 | return 0; |
---|
457 | return test_and_clear_bit(_PAGE_D_BIT, ptep); |
---|
458 | #else |
---|
459 | pte_t pte = *ptep; |
---|
460 | if (!pte_dirty(pte)) |
---|
461 | return 0; |
---|
462 | set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); |
---|
463 | return 1; |
---|
464 | #endif |
---|
465 | } |
---|
466 | #endif |
---|
467 | |
---|
468 | #ifdef XEN |
---|
469 | static inline pte_t |
---|
470 | ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
---|
471 | volatile pte_t *ptep) |
---|
472 | #else |
---|
473 | static inline pte_t |
---|
474 | ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
---|
475 | #endif |
---|
476 | { |
---|
477 | #ifdef CONFIG_SMP |
---|
478 | return __pte(xchg((long *) ptep, 0)); |
---|
479 | #else |
---|
480 | pte_t pte = *ptep; |
---|
481 | pte_clear(mm, addr, ptep); |
---|
482 | return pte; |
---|
483 | #endif |
---|
484 | } |
---|
485 | |
---|
486 | #ifdef XEN |
---|
487 | static inline pte_t |
---|
488 | ptep_xchg(struct mm_struct *mm, unsigned long addr, |
---|
489 | volatile pte_t *ptep, pte_t npte) |
---|
490 | { |
---|
491 | #ifdef CONFIG_SMP |
---|
492 | return __pte(xchg((long *) ptep, pte_val(npte))); |
---|
493 | #else |
---|
494 | pte_t pte = *ptep; |
---|
495 | set_pte (ptep, npte); |
---|
496 | return pte; |
---|
497 | #endif |
---|
498 | } |
---|
499 | |
---|
500 | static inline pte_t |
---|
501 | ptep_cmpxchg_rel(struct mm_struct *mm, unsigned long addr, |
---|
502 | volatile pte_t *ptep, pte_t old_pte, pte_t new_pte) |
---|
503 | { |
---|
504 | #ifdef CONFIG_SMP |
---|
505 | return __pte(cmpxchg_rel(&pte_val(*ptep), |
---|
506 | pte_val(old_pte), pte_val(new_pte))); |
---|
507 | #else |
---|
508 | pte_t pte = *ptep; |
---|
509 | if (pte_val(pte) == pte_val(old_pte)) { |
---|
510 | set_pte(ptep, new_pte); |
---|
511 | } |
---|
512 | return pte; |
---|
513 | #endif |
---|
514 | } |
---|
515 | #endif |
---|
516 | |
---|
517 | #ifndef XEN |
---|
518 | static inline void |
---|
519 | ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
---|
520 | { |
---|
521 | #ifdef CONFIG_SMP |
---|
522 | unsigned long new, old; |
---|
523 | |
---|
524 | do { |
---|
525 | old = pte_val(*ptep); |
---|
526 | new = pte_val(pte_wrprotect(__pte (old))); |
---|
527 | } while (cmpxchg((unsigned long *) ptep, old, new) != old); |
---|
528 | #else |
---|
529 | pte_t old_pte = *ptep; |
---|
530 | set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); |
---|
531 | #endif |
---|
532 | } |
---|
533 | |
---|
534 | static inline int |
---|
535 | pte_same (pte_t a, pte_t b) |
---|
536 | { |
---|
537 | return pte_val(a) == pte_val(b); |
---|
538 | } |
---|
539 | |
---|
540 | #define update_mmu_cache(vma, address, pte) do { } while (0) |
---|
541 | #endif /* XEN */ |
---|
542 | |
---|
543 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
---|
544 | extern void paging_init (void); |
---|
545 | |
---|
546 | /* |
---|
547 | * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of |
---|
548 | * bits in the swap-type field of the swap pte. It would be nice to |
---|
549 | * enforce that, but we can't easily include <linux/swap.h> here. |
---|
550 | * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). |
---|
551 | * |
---|
552 | * Format of swap pte: |
---|
553 | * bit 0 : present bit (must be zero) |
---|
554 | * bit 1 : _PAGE_FILE (must be zero) |
---|
555 | * bits 2- 8: swap-type |
---|
556 | * bits 9-62: swap offset |
---|
557 | * bit 63 : _PAGE_PROTNONE bit |
---|
558 | * |
---|
559 | * Format of file pte: |
---|
560 | * bit 0 : present bit (must be zero) |
---|
561 | * bit 1 : _PAGE_FILE (must be one) |
---|
562 | * bits 2-62: file_offset/PAGE_SIZE |
---|
563 | * bit 63 : _PAGE_PROTNONE bit |
---|
564 | */ |
---|
565 | #define __swp_type(entry) (((entry).val >> 2) & 0x7f) |
---|
566 | #define __swp_offset(entry) (((entry).val << 1) >> 10) |
---|
567 | #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) |
---|
568 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
---|
569 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
---|
570 | |
---|
571 | #define PTE_FILE_MAX_BITS 61 |
---|
572 | #define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) |
---|
573 | #define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) |
---|
574 | |
---|
575 | /* XXX is this right? */ |
---|
576 | #define io_remap_page_range(vma, vaddr, paddr, size, prot) \ |
---|
577 | remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) |
---|
578 | |
---|
579 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
---|
580 | remap_pfn_range(vma, vaddr, pfn, size, prot) |
---|
581 | |
---|
582 | #define MK_IOSPACE_PFN(space, pfn) (pfn) |
---|
583 | #define GET_IOSPACE(pfn) 0 |
---|
584 | #define GET_PFN(pfn) (pfn) |
---|
585 | |
---|
586 | /* |
---|
587 | * ZERO_PAGE is a global shared page that is always zero: used |
---|
588 | * for zero-mapped memory areas etc.. |
---|
589 | */ |
---|
590 | extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; |
---|
591 | #ifndef XEN |
---|
592 | extern struct page *zero_page_memmap_ptr; |
---|
593 | #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) |
---|
594 | #endif |
---|
595 | |
---|
596 | /* We provide our own get_unmapped_area to cope with VA holes for userland */ |
---|
597 | #define HAVE_ARCH_UNMAPPED_AREA |
---|
598 | |
---|
599 | #ifdef CONFIG_HUGETLB_PAGE |
---|
600 | #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) |
---|
601 | #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) |
---|
602 | #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) |
---|
603 | struct mmu_gather; |
---|
604 | void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr, |
---|
605 | unsigned long end, unsigned long floor, unsigned long ceiling); |
---|
606 | #endif |
---|
607 | |
---|
608 | /* |
---|
609 | * IA-64 doesn't have any external MMU info: the page tables contain all the necessary |
---|
610 | * information. However, we use this routine to take care of any (delayed) i-cache |
---|
611 | * flushing that may be necessary. |
---|
612 | */ |
---|
613 | extern void lazy_mmu_prot_update (pte_t pte); |
---|
614 | |
---|
615 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
---|
616 | /* |
---|
617 | * Update PTEP with ENTRY, which is guaranteed to be a less |
---|
618 | * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and |
---|
619 | * WRITABLE bits turned on, when the value at PTEP did not. The |
---|
620 | * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. |
---|
621 | * |
---|
622 | * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without |
---|
623 | * having to worry about races. On SMP machines, there are only two |
---|
624 | * cases where this is true: |
---|
625 | * |
---|
626 | * (1) *PTEP has the PRESENT bit turned OFF |
---|
627 | * (2) ENTRY has the DIRTY bit turned ON |
---|
628 | * |
---|
629 | * On ia64, we could implement this routine with a cmpxchg()-loop |
---|
630 | * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. |
---|
631 | * However, like on x86, we can get a more streamlined version by |
---|
632 | * observing that it is OK to drop ACCESSED bit updates when |
---|
633 | * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is |
---|
634 | * result in an extra Access-bit fault, which would then turn on the |
---|
635 | * ACCESSED bit in the low-level fault handler (iaccess_bit or |
---|
636 | * daccess_bit in ivt.S). |
---|
637 | */ |
---|
638 | #ifdef CONFIG_SMP |
---|
639 | # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ |
---|
640 | do { \ |
---|
641 | if (__safely_writable) { \ |
---|
642 | set_pte(__ptep, __entry); \ |
---|
643 | flush_tlb_page(__vma, __addr); \ |
---|
644 | } \ |
---|
645 | } while (0) |
---|
646 | #else |
---|
647 | # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ |
---|
648 | ptep_establish(__vma, __addr, __ptep, __entry) |
---|
649 | #endif |
---|
650 | |
---|
651 | # ifdef CONFIG_VIRTUAL_MEM_MAP |
---|
652 | /* arch mem_map init routine is needed due to holes in a virtual mem_map */ |
---|
653 | # define __HAVE_ARCH_MEMMAP_INIT |
---|
654 | extern void memmap_init (unsigned long size, int nid, unsigned long zone, |
---|
655 | unsigned long start_pfn); |
---|
656 | # endif /* CONFIG_VIRTUAL_MEM_MAP */ |
---|
657 | # endif /* !__ASSEMBLY__ */ |
---|
658 | |
---|
659 | /* |
---|
660 | * Identity-mapped regions use a large page size. We'll call such large pages |
---|
661 | * "granules". If you can think of a better name that's unambiguous, let me |
---|
662 | * know... |
---|
663 | */ |
---|
664 | #if defined(CONFIG_IA64_GRANULE_64MB) |
---|
665 | # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M |
---|
666 | #elif defined(CONFIG_IA64_GRANULE_16MB) |
---|
667 | # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M |
---|
668 | #endif |
---|
669 | #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) |
---|
670 | /* |
---|
671 | * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): |
---|
672 | */ |
---|
673 | #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M |
---|
674 | #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) |
---|
675 | |
---|
676 | /* |
---|
677 | * No page table caches to initialise |
---|
678 | */ |
---|
679 | #define pgtable_cache_init() do { } while (0) |
---|
680 | |
---|
681 | /* These tell get_user_pages() that the first gate page is accessible from user-level. */ |
---|
682 | #define FIXADDR_USER_START GATE_ADDR |
---|
683 | #ifdef HAVE_BUGGY_SEGREL |
---|
684 | # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) |
---|
685 | #else |
---|
686 | # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) |
---|
687 | #endif |
---|
688 | |
---|
689 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
---|
690 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
---|
691 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
---|
692 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
---|
693 | #define __HAVE_ARCH_PTE_SAME |
---|
694 | #define __HAVE_ARCH_PGD_OFFSET_GATE |
---|
695 | #define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE |
---|
696 | |
---|
697 | #include <asm-generic/pgtable-nopud.h> |
---|
698 | #include <asm-generic/pgtable.h> |
---|
699 | |
---|
700 | #endif /* _ASM_IA64_PGTABLE_H */ |
---|