source: trunk/packages/xen-common/xen-common/xen/arch/ia64/linux-xen/time.c @ 34

Last change on this file since 34 was 34, checked in by hartmans, 17 years ago

Add xen and xen-common

File size: 7.6 KB
RevLine 
[34]1/*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 *      Stephane Eranian <eranian@hpl.hp.com>
6 *      David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11#include <linux/config.h>
12
13#include <linux/cpu.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/profile.h>
18#include <linux/sched.h>
19#include <linux/time.h>
20#include <linux/interrupt.h>
21#include <linux/efi.h>
22#include <linux/profile.h>
23#include <linux/timex.h>
24
25#include <asm/machvec.h>
26#include <asm/delay.h>
27#include <asm/hw_irq.h>
28#include <asm/ptrace.h>
29#include <asm/sal.h>
30#include <asm/sections.h>
31#include <asm/system.h>
32#ifdef XEN
33#include <linux/jiffies.h>      // not included by xen/sched.h
34#endif
35
36extern unsigned long wall_jiffies;
37
38u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
39
40EXPORT_SYMBOL(jiffies_64);
41
42#define TIME_KEEPER_ID  0       /* smp_processor_id() of time-keeper */
43
44#ifdef CONFIG_IA64_DEBUG_IRQ
45
46unsigned long last_cli_ip;
47EXPORT_SYMBOL(last_cli_ip);
48
49#endif
50
51#ifndef XEN
52static struct time_interpolator itc_interpolator = {
53        .shift = 16,
54        .mask = 0xffffffffffffffffLL,
55        .source = TIME_SOURCE_CPU
56};
57
58static irqreturn_t
59timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
60{
61        unsigned long new_itm;
62
63        if (unlikely(cpu_is_offline(smp_processor_id()))) {
64                return IRQ_HANDLED;
65        }
66
67        platform_timer_interrupt(irq, dev_id, regs);
68
69        new_itm = local_cpu_data->itm_next;
70
71        if (!time_after(ia64_get_itc(), new_itm))
72                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
73                       ia64_get_itc(), new_itm);
74
75        profile_tick(CPU_PROFILING, regs);
76
77        while (1) {
78                update_process_times(user_mode(regs));
79
80                new_itm += local_cpu_data->itm_delta;
81
82                if (smp_processor_id() == TIME_KEEPER_ID) {
83                        /*
84                         * Here we are in the timer irq handler. We have irqs locally
85                         * disabled, but we don't know if the timer_bh is running on
86                         * another CPU. We need to avoid to SMP race by acquiring the
87                         * xtime_lock.
88                         */
89                        write_seqlock(&xtime_lock);
90                        do_timer(regs);
91                        local_cpu_data->itm_next = new_itm;
92                        write_sequnlock(&xtime_lock);
93                } else
94                        local_cpu_data->itm_next = new_itm;
95
96                if (time_after(new_itm, ia64_get_itc()))
97                        break;
98        }
99
100        do {
101                /*
102                 * If we're too close to the next clock tick for
103                 * comfort, we increase the safety margin by
104                 * intentionally dropping the next tick(s).  We do NOT
105                 * update itm.next because that would force us to call
106                 * do_timer() which in turn would let our clock run
107                 * too fast (with the potentially devastating effect
108                 * of losing monotony of time).
109                 */
110                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
111                        new_itm += local_cpu_data->itm_delta;
112                ia64_set_itm(new_itm);
113                /* double check, in case we got hit by a (slow) PMI: */
114        } while (time_after_eq(ia64_get_itc(), new_itm));
115        return IRQ_HANDLED;
116}
117#endif
118
119/*
120 * Encapsulate access to the itm structure for SMP.
121 */
122void
123ia64_cpu_local_tick (void)
124{
125        int cpu = smp_processor_id();
126        unsigned long shift = 0, delta;
127
128        /* arrange for the cycle counter to generate a timer interrupt: */
129        ia64_set_itv(IA64_TIMER_VECTOR);
130
131        delta = local_cpu_data->itm_delta;
132        /*
133         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
134         * same time:
135         */
136        if (cpu) {
137                unsigned long hi = 1UL << ia64_fls(cpu);
138                shift = (2*(cpu - hi) + 1) * delta/hi/2;
139        }
140        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
141        ia64_set_itm(local_cpu_data->itm_next);
142}
143
144static int nojitter;
145
146static int __init nojitter_setup(char *str)
147{
148        nojitter = 1;
149        printk("Jitter checking for ITC timers disabled\n");
150        return 1;
151}
152
153__setup("nojitter", nojitter_setup);
154
155
156void __devinit
157ia64_init_itm (void)
158{
159        unsigned long platform_base_freq, itc_freq;
160        struct pal_freq_ratio itc_ratio, proc_ratio;
161#ifdef XEN /* warning cleanup */
162        unsigned long status, platform_base_drift, itc_drift;
163#else
164        long status, platform_base_drift, itc_drift;
165#endif
166
167        /*
168         * According to SAL v2.6, we need to use a SAL call to determine the platform base
169         * frequency and then a PAL call to determine the frequency ratio between the ITC
170         * and the base frequency.
171         */
172        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
173                                    &platform_base_freq, &platform_base_drift);
174        if (status != 0) {
175                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
176        } else {
177                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
178                if (status != 0)
179                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
180        }
181        if (status != 0) {
182                /* invent "random" values */
183                printk(KERN_ERR
184                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
185                platform_base_freq = 100000000;
186                platform_base_drift = -1;       /* no drift info */
187                itc_ratio.num = 3;
188                itc_ratio.den = 1;
189        }
190        if (platform_base_freq < 40000000) {
191                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
192                       platform_base_freq);
193                platform_base_freq = 75000000;
194                platform_base_drift = -1;
195        }
196        if (!proc_ratio.den)
197                proc_ratio.den = 1;     /* avoid division by zero */
198        if (!itc_ratio.den)
199                itc_ratio.den = 1;      /* avoid division by zero */
200
201        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
202
203        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
204        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
205               "ITC freq=%lu.%03luMHz", smp_processor_id(),
206               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
207#ifdef XEN
208               (u64)itc_ratio.num, (u64)itc_ratio.den,
209               itc_freq / 1000000, (itc_freq / 1000) % 1000);
210#else
211               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
212#endif
213
214        if (platform_base_drift != -1) {
215                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
216                printk("+/-%ldppm\n", itc_drift);
217        } else {
218                itc_drift = -1;
219                printk("\n");
220        }
221
222        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
223        local_cpu_data->itc_freq = itc_freq;
224        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
225        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
226                                        + itc_freq/2)/itc_freq;
227
228        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
229#ifndef XEN
230                itc_interpolator.frequency = local_cpu_data->itc_freq;
231                itc_interpolator.drift = itc_drift;
232#ifdef CONFIG_SMP
233                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
234                 * Jitter compensation requires a cmpxchg which may limit
235                 * the scalability of the syscalls for retrieving time.
236                 * The ITC synchronization is usually successful to within a few
237                 * ITC ticks but this is not a sure thing. If you need to improve
238                 * timer performance in SMP situations then boot the kernel with the
239                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
240                 * even going backward) if the ITC offsets between the individual CPUs
241                 * are too large.
242                 */
243                if (!nojitter) itc_interpolator.jitter = 1;
244#endif
245                register_time_interpolator(&itc_interpolator);
246#endif
247        }
248
249        /* Setup the CPU local timer tick */
250        ia64_cpu_local_tick();
251}
252
253#ifndef XEN
254static struct irqaction timer_irqaction = {
255        .handler =      timer_interrupt,
256        .flags =        SA_INTERRUPT,
257        .name =         "timer"
258};
259
260void __init
261time_init (void)
262{
263        register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
264        efi_gettimeofday(&xtime);
265        ia64_init_itm();
266
267        /*
268         * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
269         * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
270         */
271        set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
272}
273#endif
Note: See TracBrowser for help on using the repository browser.