source: trunk/packages/xen-common/xen-common/xen/arch/ia64/linux-xen/smpboot.c @ 34

Last change on this file since 34 was 34, checked in by hartmans, 17 years ago

Add xen and xen-common

File size: 21.3 KB
RevLine 
[34]1/*
2 * SMP boot-related support
3 *
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 *      David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 *      Rohit Seth <rohit.seth@intel.com>
8 *      Suresh Siddha <suresh.b.siddha@intel.com>
9 *      Gordon Jin <gordon.jin@intel.com>
10 *      Ashok Raj  <ashok.raj@intel.com>
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 *                                              smp_boot_cpus()/smp_commence() is replaced by
16 *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 *                                              Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 *                                              Setup cpu_sibling_map and cpu_core_map
23 */
24#include <linux/config.h>
25
26#include <linux/module.h>
27#include <linux/acpi.h>
28#include <linux/bootmem.h>
29#include <linux/cpu.h>
30#include <linux/delay.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/irq.h>
34#include <linux/kernel.h>
35#include <linux/kernel_stat.h>
36#include <linux/mm.h>
37#include <linux/notifier.h>     /* hg add me */
38#include <linux/smp.h>
39#include <linux/smp_lock.h>
40#include <linux/spinlock.h>
41#include <linux/efi.h>
42#include <linux/percpu.h>
43#include <linux/bitops.h>
44
45#include <asm/atomic.h>
46#include <asm/cache.h>
47#include <asm/current.h>
48#include <asm/delay.h>
49#include <asm/ia32.h>
50#include <asm/io.h>
51#include <asm/irq.h>
52#include <asm/machvec.h>
53#include <asm/mca.h>
54#include <asm/page.h>
55#include <asm/pgalloc.h>
56#include <asm/pgtable.h>
57#include <asm/processor.h>
58#include <asm/ptrace.h>
59#include <asm/sal.h>
60#include <asm/system.h>
61#include <asm/tlbflush.h>
62#include <asm/unistd.h>
63
64#ifdef XEN
65#include <xen/domain.h>
66#include <asm/hw_irq.h>
67#ifndef CONFIG_SMP
68cpumask_t cpu_online_map = CPU_MASK_CPU0;
69EXPORT_SYMBOL(cpu_online_map);
70#endif
71#endif
72
73#ifdef CONFIG_SMP /* ifdef XEN */
74
75#define SMP_DEBUG 0
76
77#if SMP_DEBUG
78#define Dprintk(x...)  printk(x)
79#else
80#define Dprintk(x...)
81#endif
82
83#ifdef CONFIG_HOTPLUG_CPU
84/*
85 * Store all idle threads, this can be reused instead of creating
86 * a new thread. Also avoids complicated thread destroy functionality
87 * for idle threads.
88 */
89struct task_struct *idle_thread_array[NR_CPUS];
90
91/*
92 * Global array allocated for NR_CPUS at boot time
93 */
94struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
95
96/*
97 * start_ap in head.S uses this to store current booting cpu
98 * info.
99 */
100struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
101
102#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
103
104#define get_idle_for_cpu(x)             (idle_thread_array[(x)])
105#define set_idle_for_cpu(x,p)   (idle_thread_array[(x)] = (p))
106
107#else
108
109#define get_idle_for_cpu(x)             (NULL)
110#define set_idle_for_cpu(x,p)
111#define set_brendez_area(x)
112#endif
113
114
115/*
116 * ITC synchronization related stuff:
117 */
118#define MASTER  0
119#define SLAVE   (SMP_CACHE_BYTES/8)
120
121#define NUM_ROUNDS      64      /* magic value */
122#define NUM_ITERS       5       /* likewise */
123
124static DEFINE_SPINLOCK(itc_sync_lock);
125static volatile unsigned long go[SLAVE + 1];
126
127#define DEBUG_ITC_SYNC  0
128
129extern void __devinit calibrate_delay (void);
130extern void start_ap (void);
131extern unsigned long ia64_iobase;
132
133task_t *task_for_booting_cpu;
134
135/*
136 * State for each CPU
137 */
138DEFINE_PER_CPU(int, cpu_state);
139
140/* Bitmasks of currently online, and possible CPUs */
141cpumask_t cpu_online_map;
142EXPORT_SYMBOL(cpu_online_map);
143cpumask_t cpu_possible_map;
144EXPORT_SYMBOL(cpu_possible_map);
145
146cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
147cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
148int smp_num_siblings = 1;
149int smp_num_cpucores = 1;
150
151/* which logical CPU number maps to which CPU (physical APIC ID) */
152volatile int ia64_cpu_to_sapicid[NR_CPUS];
153EXPORT_SYMBOL(ia64_cpu_to_sapicid);
154
155static volatile cpumask_t cpu_callin_map;
156
157struct smp_boot_data smp_boot_data __initdata;
158
159unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
160
161char __initdata no_int_routing;
162
163unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
164
165static int __init
166nointroute (char *str)
167{
168        no_int_routing = 1;
169        printk ("no_int_routing on\n");
170        return 1;
171}
172
173__setup("nointroute", nointroute);
174
175void
176sync_master (void *arg)
177{
178        unsigned long flags, i;
179
180        go[MASTER] = 0;
181
182        local_irq_save(flags);
183        {
184                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
185                        while (!go[MASTER])
186                                cpu_relax();
187                        go[MASTER] = 0;
188                        go[SLAVE] = ia64_get_itc();
189                }
190        }
191        local_irq_restore(flags);
192}
193
194/*
195 * Return the number of cycles by which our itc differs from the itc on the master
196 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
197 * negative that it is behind.
198 */
199static inline long
200#ifdef XEN /* warning cleanup */
201get_delta (unsigned long *rt, unsigned long *master)
202#else
203get_delta (long *rt, long *master)
204#endif
205{
206        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
207        unsigned long tcenter, t0, t1, tm;
208        long i;
209
210        for (i = 0; i < NUM_ITERS; ++i) {
211                t0 = ia64_get_itc();
212                go[MASTER] = 1;
213                while (!(tm = go[SLAVE]))
214                        cpu_relax();
215                go[SLAVE] = 0;
216                t1 = ia64_get_itc();
217
218                if (t1 - t0 < best_t1 - best_t0)
219                        best_t0 = t0, best_t1 = t1, best_tm = tm;
220        }
221
222        *rt = best_t1 - best_t0;
223        *master = best_tm - best_t0;
224
225        /* average best_t0 and best_t1 without overflow: */
226        tcenter = (best_t0/2 + best_t1/2);
227        if (best_t0 % 2 + best_t1 % 2 == 2)
228                ++tcenter;
229        return tcenter - best_tm;
230}
231
232/*
233 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
234 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
235 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
236 * step).  The basic idea is for the slave to ask the master what itc value it has and to
237 * read its own itc before and after the master responds.  Each iteration gives us three
238 * timestamps:
239 *
240 *      slave           master
241 *
242 *      t0 ---\
243 *             ---\
244 *                 --->
245 *                      tm
246 *                 /---
247 *             /---
248 *      t1 <---
249 *
250 *
251 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
252 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
253 * between the slave and the master is symmetric.  Even if the interconnect were
254 * asymmetric, we would still know that the synchronization error is smaller than the
255 * roundtrip latency (t0 - t1).
256 *
257 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
258 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
259 * accurate to within a round-trip time, which is typically in the range of several
260 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
261 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
262 * than half a micro second or so.
263 */
264void
265ia64_sync_itc (unsigned int master)
266{
267        long i, delta, adj, adjust_latency = 0, done = 0;
268        unsigned long flags, rt, master_time_stamp, bound;
269#if DEBUG_ITC_SYNC
270        struct {
271                long rt;        /* roundtrip time */
272                long master;    /* master's timestamp */
273                long diff;      /* difference between midpoint and master's timestamp */
274                long lat;       /* estimate of itc adjustment latency */
275        } t[NUM_ROUNDS];
276#endif
277
278        /*
279         * Make sure local timer ticks are disabled while we sync.  If
280         * they were enabled, we'd have to worry about nasty issues
281         * like setting the ITC ahead of (or a long time before) the
282         * next scheduled tick.
283         */
284        BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
285
286        go[MASTER] = 1;
287
288        if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
289                printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
290                return;
291        }
292
293        while (go[MASTER])
294                cpu_relax();    /* wait for master to be ready */
295
296        spin_lock_irqsave(&itc_sync_lock, flags);
297        {
298                for (i = 0; i < NUM_ROUNDS; ++i) {
299                        delta = get_delta(&rt, &master_time_stamp);
300                        if (delta == 0) {
301                                done = 1;       /* let's lock on to this... */
302                                bound = rt;
303                        }
304
305                        if (!done) {
306                                if (i > 0) {
307                                        adjust_latency += -delta;
308                                        adj = -delta + adjust_latency/4;
309                                } else
310                                        adj = -delta;
311
312                                ia64_set_itc(ia64_get_itc() + adj);
313                        }
314#if DEBUG_ITC_SYNC
315                        t[i].rt = rt;
316                        t[i].master = master_time_stamp;
317                        t[i].diff = delta;
318                        t[i].lat = adjust_latency/4;
319#endif
320                }
321        }
322        spin_unlock_irqrestore(&itc_sync_lock, flags);
323
324#if DEBUG_ITC_SYNC
325        for (i = 0; i < NUM_ROUNDS; ++i)
326                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
328#endif
329
330        printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
331               "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
332}
333
334/*
335 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
336 */
337static inline void __devinit
338smp_setup_percpu_timer (void)
339{
340}
341
342static void __devinit
343smp_callin (void)
344{
345        int cpuid, phys_id;
346        extern void ia64_init_itm(void);
347
348#ifdef CONFIG_PERFMON
349        extern void pfm_init_percpu(void);
350#endif
351
352        cpuid = smp_processor_id();
353        phys_id = hard_smp_processor_id();
354
355        if (cpu_online(cpuid)) {
356                printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
357                       phys_id, cpuid);
358                BUG();
359        }
360
361        lock_ipi_calllock();
362        cpu_set(cpuid, cpu_online_map);
363        unlock_ipi_calllock();
364        per_cpu(cpu_state, cpuid) = CPU_ONLINE;
365
366        smp_setup_percpu_timer();
367
368        ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
369
370#ifdef CONFIG_PERFMON
371        pfm_init_percpu();
372#endif
373
374        local_irq_enable();
375
376        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
377                /*
378                 * Synchronize the ITC with the BP.  Need to do this after irqs are
379                 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
380                 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
381                 * local_bh_enable(), which bugs out if irqs are not enabled...
382                 */
383                Dprintk("Going to syncup ITC with BP.\n");
384                ia64_sync_itc(0);
385        }
386
387        /*
388         * Get our bogomips.
389         */
390        ia64_init_itm();
391#ifndef XEN
392        calibrate_delay();
393#endif
394        local_cpu_data->loops_per_jiffy = loops_per_jiffy;
395
396#ifdef CONFIG_IA32_SUPPORT
397        ia32_gdt_init();
398#endif
399
400        /*
401         * Allow the master to continue.
402         */
403        cpu_set(cpuid, cpu_callin_map);
404        Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
405}
406
407
408/*
409 * Activate a secondary processor.  head.S calls this.
410 */
411int __devinit
412start_secondary (void *unused)
413{
414        /* Early console may use I/O ports */
415        ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
416        Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
417        efi_map_pal_code();
418        cpu_init();
419        smp_callin();
420
421#ifdef XEN
422        startup_cpu_idle_loop();
423#else
424        cpu_idle();
425#endif
426        return 0;
427}
428
429struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
430{
431        return NULL;
432}
433
434#ifndef XEN
435struct create_idle {
436        struct task_struct *idle;
437        struct completion done;
438        int cpu;
439};
440
441void
442do_fork_idle(void *_c_idle)
443{
444        struct create_idle *c_idle = _c_idle;
445
446        c_idle->idle = fork_idle(c_idle->cpu);
447        complete(&c_idle->done);
448}
449#endif
450
451static int __devinit
452do_boot_cpu (int sapicid, int cpu)
453{
454        int timeout;
455#ifndef XEN
456        struct create_idle c_idle = {
457                .cpu    = cpu,
458                .done   = COMPLETION_INITIALIZER(c_idle.done),
459        };
460        DECLARE_WORK(work, do_fork_idle, &c_idle);
461
462        c_idle.idle = get_idle_for_cpu(cpu);
463        if (c_idle.idle) {
464                init_idle(c_idle.idle, cpu);
465                goto do_rest;
466        }
467
468        /*
469         * We can't use kernel_thread since we must avoid to reschedule the child.
470         */
471        if (!keventd_up() || current_is_keventd())
472                work.func(work.data);
473        else {
474                schedule_work(&work);
475                wait_for_completion(&c_idle.done);
476        }
477
478        if (IS_ERR(c_idle.idle))
479                panic("failed fork for CPU %d", cpu);
480
481        set_idle_for_cpu(cpu, c_idle.idle);
482
483do_rest:
484        task_for_booting_cpu = c_idle.idle;
485#else
486        struct vcpu *v;
487
488        v = alloc_idle_vcpu(cpu);
489        BUG_ON(v == NULL);
490
491        //printf ("do_boot_cpu: cpu=%d, domain=%p, vcpu=%p\n", cpu, idle, v);
492
493        task_for_booting_cpu = (task_t *)v;
494
495        /* Set cpu number.  */
496        get_thread_info(v)->cpu = cpu;
497#endif
498
499        Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
500
501        set_brendez_area(cpu);
502        platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
503
504        /*
505         * Wait 10s total for the AP to start
506         */
507        Dprintk("Waiting on callin_map ...");
508        for (timeout = 0; timeout < 100000; timeout++) {
509                if (cpu_isset(cpu, cpu_callin_map))
510                        break;  /* It has booted */
511                udelay(100);
512        }
513        Dprintk("\n");
514
515        if (!cpu_isset(cpu, cpu_callin_map)) {
516                printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
517                ia64_cpu_to_sapicid[cpu] = -1;
518                cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
519                return -EINVAL;
520        }
521        return 0;
522}
523
524#ifndef XEN
525static int __init
526decay (char *str)
527{
528        int ticks;
529        get_option (&str, &ticks);
530        return 1;
531}
532
533__setup("decay=", decay);
534#endif
535
536/*
537 * Initialize the logical CPU number to SAPICID mapping
538 */
539void __init
540smp_build_cpu_map (void)
541{
542        int sapicid, cpu, i;
543        int boot_cpu_id = hard_smp_processor_id();
544
545        for (cpu = 0; cpu < NR_CPUS; cpu++) {
546                ia64_cpu_to_sapicid[cpu] = -1;
547#ifdef CONFIG_HOTPLUG_CPU
548                cpu_set(cpu, cpu_possible_map);
549#endif
550        }
551
552        ia64_cpu_to_sapicid[0] = boot_cpu_id;
553        cpus_clear(cpu_present_map);
554        cpu_set(0, cpu_present_map);
555        cpu_set(0, cpu_possible_map);
556        for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
557                sapicid = smp_boot_data.cpu_phys_id[i];
558                if (sapicid == boot_cpu_id)
559                        continue;
560                cpu_set(cpu, cpu_present_map);
561                cpu_set(cpu, cpu_possible_map);
562                ia64_cpu_to_sapicid[cpu] = sapicid;
563                cpu++;
564        }
565}
566
567/*
568 * Cycle through the APs sending Wakeup IPIs to boot each.
569 */
570void __init
571smp_prepare_cpus (unsigned int max_cpus)
572{
573        int boot_cpu_id = hard_smp_processor_id();
574
575        /*
576         * Initialize the per-CPU profiling counter/multiplier
577         */
578
579        smp_setup_percpu_timer();
580
581        /*
582         * We have the boot CPU online for sure.
583         */
584        cpu_set(0, cpu_online_map);
585        cpu_set(0, cpu_callin_map);
586
587        local_cpu_data->loops_per_jiffy = loops_per_jiffy;
588        ia64_cpu_to_sapicid[0] = boot_cpu_id;
589
590        printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
591
592        current_thread_info()->cpu = 0;
593
594        /*
595         * If SMP should be disabled, then really disable it!
596         */
597        if (!max_cpus) {
598                printk(KERN_INFO "SMP mode deactivated.\n");
599                cpus_clear(cpu_online_map);
600                cpus_clear(cpu_present_map);
601                cpus_clear(cpu_possible_map);
602                cpu_set(0, cpu_online_map);
603                cpu_set(0, cpu_present_map);
604                cpu_set(0, cpu_possible_map);
605                return;
606        }
607}
608
609void __devinit smp_prepare_boot_cpu(void)
610{
611        cpu_set(smp_processor_id(), cpu_online_map);
612        cpu_set(smp_processor_id(), cpu_callin_map);
613        per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
614}
615
616/*
617 * mt_info[] is a temporary store for all info returned by
618 * PAL_LOGICAL_TO_PHYSICAL, to be copied into cpuinfo_ia64 when the
619 * specific cpu comes.
620 */
621static struct {
622        __u32   socket_id;
623        __u16   core_id;
624        __u16   thread_id;
625        __u16   proc_fixed_addr;
626        __u8    valid;
627} mt_info[NR_CPUS] __devinitdata;
628
629#ifdef CONFIG_HOTPLUG_CPU
630static inline void
631remove_from_mtinfo(int cpu)
632{
633        int i;
634
635        for_each_cpu(i)
636                if (mt_info[i].valid &&  mt_info[i].socket_id ==
637                                                cpu_data(cpu)->socket_id)
638                        mt_info[i].valid = 0;
639}
640
641static inline void
642clear_cpu_sibling_map(int cpu)
643{
644        int i;
645
646        for_each_cpu_mask(i, cpu_sibling_map[cpu])
647                cpu_clear(cpu, cpu_sibling_map[i]);
648        for_each_cpu_mask(i, cpu_core_map[cpu])
649                cpu_clear(cpu, cpu_core_map[i]);
650
651        cpus_clear(cpu_sibling_map[cpu]);
652        cpus_clear(cpu_core_map[cpu]);
653}
654
655static void
656remove_siblinginfo(int cpu)
657{
658        int last = 0;
659
660        if (cpu_data(cpu)->threads_per_core == 1 &&
661            cpu_data(cpu)->cores_per_socket == 1) {
662                cpu_clear(cpu, cpu_core_map[cpu]);
663                cpu_clear(cpu, cpu_sibling_map[cpu]);
664                return;
665        }
666
667        last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
668
669        /* remove it from all sibling map's */
670        clear_cpu_sibling_map(cpu);
671
672        /* if this cpu is the last in the core group, remove all its info
673         * from mt_info structure
674         */
675        if (last)
676                remove_from_mtinfo(cpu);
677}
678
679extern void fixup_irqs(void);
680/* must be called with cpucontrol mutex held */
681int __cpu_disable(void)
682{
683        int cpu = smp_processor_id();
684
685        /*
686         * dont permit boot processor for now
687         */
688        if (cpu == 0)
689                return -EBUSY;
690
691        remove_siblinginfo(cpu);
692        cpu_clear(cpu, cpu_online_map);
693        fixup_irqs();
694        local_flush_tlb_all();
695        cpu_clear(cpu, cpu_callin_map);
696        return 0;
697}
698
699void __cpu_die(unsigned int cpu)
700{
701        unsigned int i;
702
703        for (i = 0; i < 100; i++) {
704                /* They ack this in play_dead by setting CPU_DEAD */
705                if (per_cpu(cpu_state, cpu) == CPU_DEAD)
706                {
707                        printk ("CPU %d is now offline\n", cpu);
708                        return;
709                }
710                msleep(100);
711        }
712        printk(KERN_ERR "CPU %u didn't die...\n", cpu);
713}
714#else /* !CONFIG_HOTPLUG_CPU */
715int __cpu_disable(void)
716{
717        return -ENOSYS;
718}
719
720void __cpu_die(unsigned int cpu)
721{
722        /* We said "no" in __cpu_disable */
723        BUG();
724}
725#endif /* CONFIG_HOTPLUG_CPU */
726
727void
728smp_cpus_done (unsigned int dummy)
729{
730        int cpu;
731        unsigned long bogosum = 0;
732
733        /*
734         * Allow the user to impress friends.
735         */
736
737        for (cpu = 0; cpu < NR_CPUS; cpu++)
738                if (cpu_online(cpu))
739                        bogosum += cpu_data(cpu)->loops_per_jiffy;
740
741        printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
742               (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
743}
744
745static inline void __devinit
746set_cpu_sibling_map(int cpu)
747{
748        int i;
749
750        for_each_online_cpu(i) {
751                if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
752                        cpu_set(i, cpu_core_map[cpu]);
753                        cpu_set(cpu, cpu_core_map[i]);
754                        if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
755                                cpu_set(i, cpu_sibling_map[cpu]);
756                                cpu_set(cpu, cpu_sibling_map[i]);
757                        }
758                }
759        }
760}
761
762int __devinit
763__cpu_up (unsigned int cpu)
764{
765        int ret;
766        int sapicid;
767
768        sapicid = ia64_cpu_to_sapicid[cpu];
769        if (sapicid == -1)
770                return -EINVAL;
771
772        /*
773         * Already booted cpu? not valid anymore since we dont
774         * do idle loop tightspin anymore.
775         */
776        if (cpu_isset(cpu, cpu_callin_map))
777                return -EINVAL;
778
779        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
780        /* Processor goes to start_secondary(), sets online flag */
781        ret = do_boot_cpu(sapicid, cpu);
782        if (ret < 0)
783                return ret;
784
785        if (cpu_data(cpu)->threads_per_core == 1 &&
786            cpu_data(cpu)->cores_per_socket == 1) {
787                cpu_set(cpu, cpu_sibling_map[cpu]);
788                cpu_set(cpu, cpu_core_map[cpu]);
789                return 0;
790        }
791
792        set_cpu_sibling_map(cpu);
793
794        return 0;
795}
796
797/*
798 * Assume that CPU's have been discovered by some platform-dependent interface.  For
799 * SoftSDV/Lion, that would be ACPI.
800 *
801 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
802 */
803void __init
804init_smp_config(void)
805{
806        struct fptr {
807                unsigned long fp;
808                unsigned long gp;
809        } *ap_startup;
810        long sal_ret;
811
812        /* Tell SAL where to drop the AP's.  */
813        ap_startup = (struct fptr *) start_ap;
814        sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
815                                       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
816        if (sal_ret < 0)
817                printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
818                       ia64_sal_strerror(sal_ret));
819}
820
821static inline int __devinit
822check_for_mtinfo_index(void)
823{
824        int i;
825       
826        for_each_cpu(i)
827                if (!mt_info[i].valid)
828                        return i;
829
830        return -1;
831}
832
833/*
834 * Search the mt_info to find out if this socket's cid/tid information is
835 * cached or not. If the socket exists, fill in the core_id and thread_id
836 * in cpuinfo
837 */
838static int __devinit
839check_for_new_socket(__u16 logical_address, struct cpuinfo_ia64 *c)
840{
841        int i;
842        __u32 sid = c->socket_id;
843
844        for_each_cpu(i) {
845                if (mt_info[i].valid && mt_info[i].proc_fixed_addr == logical_address
846                    && mt_info[i].socket_id == sid) {
847                        c->core_id = mt_info[i].core_id;
848                        c->thread_id = mt_info[i].thread_id;
849                        return 1; /* not a new socket */
850                }
851        }
852        return 0;
853}
854
855/*
856 * identify_siblings(cpu) gets called from identify_cpu. This populates the
857 * information related to logical execution units in per_cpu_data structure.
858 */
859void __devinit
860identify_siblings(struct cpuinfo_ia64 *c)
861{
862        s64 status;
863        u16 pltid;
864        u64 proc_fixed_addr;
865        int count, i;
866        pal_logical_to_physical_t info;
867
868        if (smp_num_cpucores == 1 && smp_num_siblings == 1)
869                return;
870
871        if ((status = ia64_pal_logical_to_phys(0, &info)) != PAL_STATUS_SUCCESS) {
872                printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
873                       status);
874                return;
875        }
876        if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
877                printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
878                return;
879        }
880        if ((status = ia64_pal_fixed_addr(&proc_fixed_addr)) != PAL_STATUS_SUCCESS) {
881                printk(KERN_ERR "ia64_pal_fixed_addr failed with %ld\n", status);
882                return;
883        }
884
885        c->socket_id =  (pltid << 8) | info.overview_ppid;
886        c->cores_per_socket = info.overview_cpp;
887        c->threads_per_core = info.overview_tpc;
888        count = c->num_log = info.overview_num_log;
889
890        /* If the thread and core id information is already cached, then
891         * we will simply update cpu_info and return. Otherwise, we will
892         * do the PAL calls and cache core and thread id's of all the siblings.
893         */
894        if (check_for_new_socket(proc_fixed_addr, c))
895                return;
896
897        for (i = 0; i < count; i++) {
898                int index;
899
900                if (i && (status = ia64_pal_logical_to_phys(i, &info))
901                          != PAL_STATUS_SUCCESS) {
902                        printk(KERN_ERR "ia64_pal_logical_to_phys failed"
903                                        " with %ld\n", status);
904                        return;
905                }
906                if (info.log2_la == proc_fixed_addr) {
907                        c->core_id = info.log1_cid;
908                        c->thread_id = info.log1_tid;
909                }
910
911                index = check_for_mtinfo_index();
912                /* We will not do the mt_info caching optimization in this case.
913                 */
914                if (index < 0)
915                        continue;
916
917                mt_info[index].valid = 1;
918                mt_info[index].socket_id = c->socket_id;
919                mt_info[index].core_id = info.log1_cid;
920                mt_info[index].thread_id = info.log1_tid;
921                mt_info[index].proc_fixed_addr = info.log2_la;
922        }
923}
924#endif /* CONFIG_SMP ifdef XEN */
Note: See TracBrowser for help on using the repository browser.