source: trunk/packages/xen-common/xen-common/tools/vtpm_manager/util/hashtable.c @ 95

Last change on this file since 95 was 34, checked in by hartmans, 18 years ago

Add xen and xen-common

File size: 9.6 KB
Line 
1/*
2 * Copyright (c) 2005, Intel Corp
3 * Copyright (c) 2002, Christopher Clark <firstname.lastname@cl.cam.ac.uk>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * * Neither the name of the original author; nor the names of any contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER
26 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
27 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33*/
34
35#include "hashtable.h"
36#include "hashtable_private.h"
37#include <stdlib.h>
38#include <stdio.h>
39#include <string.h>
40#include <math.h>
41
42/*
43Credit for primes table: Aaron Krowne
44 http://br.endernet.org/~akrowne/
45 http://planetmath.org/encyclopedia/GoodHashTablePrimes.html
46*/
47static const unsigned int primes[] = {
4853, 97, 193, 389,
49769, 1543, 3079, 6151,
5012289, 24593, 49157, 98317,
51196613, 393241, 786433, 1572869,
523145739, 6291469, 12582917, 25165843,
5350331653, 100663319, 201326611, 402653189,
54805306457, 1610612741
55};
56const unsigned int prime_table_length = sizeof(primes)/sizeof(primes[0]);
57const float max_load_factor = 0.65;
58
59/*****************************************************************************/
60struct hashtable *
61create_hashtable(unsigned int minsize,
62                 unsigned int (*hashf) (void*),
63                 int (*eqf) (void*,void*))
64{
65    struct hashtable *h;
66    unsigned int pindex, size = primes[0];
67    /* Check requested hashtable isn't too large */
68    if (minsize > (1u << 30)) return NULL;
69    /* Enforce size as prime */
70    for (pindex=0; pindex < prime_table_length; pindex++) {
71        if (primes[pindex] > minsize) { size = primes[pindex]; break; }
72    }
73    h = (struct hashtable *)malloc(sizeof(struct hashtable));
74    if (NULL == h) return NULL; /*oom*/
75    h->table = (struct entry **)malloc(sizeof(struct entry*) * size);
76    if (NULL == h->table) { free(h); return NULL; } /*oom*/
77    memset(h->table, 0, size * sizeof(struct entry *));
78    h->tablelength  = size;
79    h->primeindex   = pindex;
80    h->entrycount   = 0;
81    h->hashfn       = hashf;
82    h->eqfn         = eqf;
83    h->loadlimit    = (unsigned int) ceil(size * max_load_factor);
84#ifdef HASHTABLE_THREADED   
85    pthread_mutex_init(&h->mutex, NULL);
86#endif
87    return h;
88}
89
90/*****************************************************************************/
91unsigned int
92hash(struct hashtable *h, void *k)
93{
94    unsigned int i = h->hashfn(k);
95    i += ~(i << 9);
96    i ^=  ((i >> 14) | (i << 18)); /* >>> */
97    i +=  (i << 4);
98    i ^=  ((i >> 10) | (i << 22)); /* >>> */
99    return i;
100}
101
102/*****************************************************************************/
103static int
104hashtable_expand(struct hashtable *h)
105{
106    /* Double the size of the table to accomodate more entries */
107    struct entry **newtable;
108    struct entry *e;
109    struct entry **pE;
110    unsigned int newsize, i, index;
111    /* Check we're not hitting max capacity */
112    if (h->primeindex == (prime_table_length - 1)) return 0;
113    newsize = primes[++(h->primeindex)];
114
115    newtable = (struct entry **)malloc(sizeof(struct entry*) * newsize);
116    if (NULL != newtable)
117    {
118        memset(newtable, 0, newsize * sizeof(struct entry *));
119        /* This algorithm is not 'stable'. ie. it reverses the list
120         * when it transfers entries between the tables */
121        for (i = 0; i < h->tablelength; i++) {
122            while (NULL != (e = h->table[i])) {
123                h->table[i] = e->next;
124                index = indexFor(newsize,e->h);
125                e->next = newtable[index];
126                newtable[index] = e;
127            }
128        }
129        free(h->table);
130        h->table = newtable;
131    }
132    /* Plan B: realloc instead */
133    else 
134    {
135        newtable = (struct entry **)
136                   realloc(h->table, newsize * sizeof(struct entry *));
137        if (NULL == newtable) { (h->primeindex)--; return 0; }
138        h->table = newtable;
139        memset(newtable[h->tablelength], 0, newsize - h->tablelength);
140        for (i = 0; i < h->tablelength; i++) {
141            for (pE = &(newtable[i]), e = *pE; e != NULL; e = *pE) {
142                index = indexFor(newsize,e->h);
143                if (index == i)
144                {
145                    pE = &(e->next);
146                }
147                else
148                {
149                    *pE = e->next;
150                    e->next = newtable[index];
151                    newtable[index] = e;
152                }
153            }
154        }
155    }
156    h->tablelength = newsize;
157    h->loadlimit   = (unsigned int) ceil(newsize * max_load_factor);
158    return -1;
159}
160
161/*****************************************************************************/
162unsigned int
163hashtable_count(struct hashtable *h)
164{
165    unsigned int count;
166#ifdef HASHTABLE_THREADED
167    pthread_mutex_lock(&h->mutex);
168#endif   
169    count = h->entrycount;
170#ifdef HASHTABLE_THREADED
171    pthread_mutex_unlock(&h->mutex);
172#endif
173    return count;
174}
175
176/*****************************************************************************/
177int
178hashtable_insert(struct hashtable *h, void *k, void *v)
179{
180    /* This method allows duplicate keys - but they shouldn't be used */
181    unsigned int index;
182    struct entry *e;
183#ifdef HASHTABLE_THREADED
184    pthread_mutex_lock(&h->mutex);
185#endif   
186    if (++(h->entrycount) > h->loadlimit)
187    {
188        /* Ignore the return value. If expand fails, we should
189         * still try cramming just this value into the existing table
190         * -- we may not have memory for a larger table, but one more
191         * element may be ok. Next time we insert, we'll try expanding again.*/
192        hashtable_expand(h);
193    }
194    e = (struct entry *)malloc(sizeof(struct entry));
195    if (NULL == e) { --(h->entrycount); return 0; } /*oom*/
196    e->h = hash(h,k);
197    index = indexFor(h->tablelength,e->h);
198    e->k = k;
199    e->v = v;
200    e->next = h->table[index];
201    h->table[index] = e;
202#ifdef HASHTABLE_THREADED
203    pthread_mutex_unlock(&h->mutex);
204#endif   
205    return -1;
206}
207
208/*****************************************************************************/
209void * /* returns value associated with key */
210hashtable_search(struct hashtable *h, void *k)
211{
212#ifdef HASHTABLE_THREADED
213    pthread_mutex_lock(&h->mutex);
214#endif   
215    struct entry *e;
216    unsigned int hashvalue, index;
217    hashvalue = hash(h,k);
218    index = indexFor(h->tablelength,hashvalue);
219    e = h->table[index];
220    while (NULL != e)
221    {
222        /* Check hash value to short circuit heavier comparison */
223        if ((hashvalue == e->h) && (h->eqfn(k, e->k))) {
224#ifdef HASHTABLE_THREADED
225          pthread_mutex_unlock(&h->mutex);
226#endif   
227          return e->v;
228        }
229        e = e->next;
230    }
231#ifdef HASHTABLE_THREADED
232    pthread_mutex_unlock(&h->mutex);
233#endif   
234    return NULL;
235}
236
237/*****************************************************************************/
238void * /* returns value associated with key */
239hashtable_remove(struct hashtable *h, void *k)
240{
241    /* TODO: consider compacting the table when the load factor drops enough,
242     *       or provide a 'compact' method. */
243#ifdef HASHTABLE_THREADED
244    pthread_mutex_lock(&h->mutex);
245#endif   
246    struct entry *e;
247    struct entry **pE;
248    void *v;
249    unsigned int hashvalue, index;
250
251    hashvalue = hash(h,k);
252    index = indexFor(h->tablelength,hash(h,k));
253    pE = &(h->table[index]);
254    e = *pE;
255    while (NULL != e)
256    {
257        /* Check hash value to short circuit heavier comparison */
258        if ((hashvalue == e->h) && (h->eqfn(k, e->k)))
259        {
260            *pE = e->next;
261            h->entrycount--;
262            v = e->v;
263            freekey(e->k);
264            free(e);
265            return v;
266        }
267        pE = &(e->next);
268        e = e->next;
269    }
270#ifdef HASHTABLE_THREADED
271    pthread_mutex_unlock(&h->mutex);
272#endif   
273    return NULL;
274}
275
276/*****************************************************************************/
277/* destroy */
278void
279hashtable_destroy(struct hashtable *h, int free_values)
280{
281#ifdef HASHTABLE_THREADED
282    pthread_mutex_lock(&h->mutex);
283#endif   
284    unsigned int i;
285    struct entry *e, *f;
286    struct entry **table = h->table;
287    if (free_values)
288    {
289        for (i = 0; i < h->tablelength; i++)
290        {
291            e = table[i];
292            while (NULL != e)
293            { f = e; e = e->next; freekey(f->k); free(f->v); free(f); }
294        }
295    }
296    else
297    {
298        for (i = 0; i < h->tablelength; i++)
299        {
300            e = table[i];
301            while (NULL != e)
302            { f = e; e = e->next; freekey(f->k); free(f); }
303        }
304    }
305    free(h->table);
306#ifdef HASHTABLE_THREADED
307    pthread_mutex_destroy(&h->mutex);
308#endif   
309    free(h);
310}
Note: See TracBrowser for help on using the repository browser.