source: trunk/packages/xen-common/xen-common/linux-2.6-xen-sparse/include/linux/skbuff.h @ 34

Last change on this file since 34 was 34, checked in by hartmans, 17 years ago

Add xen and xen-common

File size: 41.5 KB
Line 
1/*
2 *      Definitions for the 'struct sk_buff' memory handlers.
3 *
4 *      Authors:
5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 *      This program is free software; you can redistribute it and/or
9 *      modify it under the terms of the GNU General Public License
10 *      as published by the Free Software Foundation; either version
11 *      2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/mm.h>
26#include <linux/highmem.h>
27#include <linux/poll.h>
28#include <linux/net.h>
29#include <linux/textsearch.h>
30#include <net/checksum.h>
31#include <linux/dmaengine.h>
32
33#define HAVE_ALLOC_SKB          /* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
35
36#define CHECKSUM_NONE 0
37#define CHECKSUM_HW 1
38#define CHECKSUM_UNNECESSARY 2
39
40#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
41                                 ~(SMP_CACHE_BYTES - 1))
42#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43                                  sizeof(struct skb_shared_info)) & \
44                                  ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 *      NONE: device failed to checksum this packet.
51 *              skb->csum is undefined.
52 *
53 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 *              skb->csum is undefined.
55 *            It is bad option, but, unfortunately, many of vendors do this.
56 *            Apparently with secret goal to sell you new device, when you
57 *            will add new protocol to your host. F.e. IPv6. 8)
58 *
59 *      HW: the most generic way. Device supplied checksum of _all_
60 *          the packet as seen by netif_rx in skb->csum.
61 *          NOTE: Even if device supports only some protocols, but
62 *          is able to produce some skb->csum, it MUST use HW,
63 *          not UNNECESSARY.
64 *
65 * B. Checksumming on output.
66 *
67 *      NONE: skb is checksummed by protocol or csum is not required.
68 *
69 *      HW: device is required to csum packet as seen by hard_start_xmit
70 *      from skb->h.raw to the end and to record the checksum
71 *      at skb->h.raw+skb->csum.
72 *
73 *      Device must show its capabilities in dev->features, set
74 *      at device setup time.
75 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
76 *                        everything.
77 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 *                        TCP/UDP over IPv4. Sigh. Vendors like this
80 *                        way by an unknown reason. Though, see comment above
81 *                        about CHECKSUM_UNNECESSARY. 8)
82 *
83 *      Any questions? No questions, good.              --ANK
84 */
85
86struct net_device;
87
88#ifdef CONFIG_NETFILTER
89struct nf_conntrack {
90        atomic_t use;
91        void (*destroy)(struct nf_conntrack *);
92};
93
94#ifdef CONFIG_BRIDGE_NETFILTER
95struct nf_bridge_info {
96        atomic_t use;
97        struct net_device *physindev;
98        struct net_device *physoutdev;
99#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100        struct net_device *netoutdev;
101#endif
102        unsigned int mask;
103        unsigned long data[32 / sizeof(unsigned long)];
104};
105#endif
106
107#endif
108
109struct sk_buff_head {
110        /* These two members must be first. */
111        struct sk_buff  *next;
112        struct sk_buff  *prev;
113
114        __u32           qlen;
115        spinlock_t      lock;
116};
117
118struct sk_buff;
119
120/* To allow 64K frame to be packed as single skb without frag_list */
121#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123typedef struct skb_frag_struct skb_frag_t;
124
125struct skb_frag_struct {
126        struct page *page;
127        __u16 page_offset;
128        __u16 size;
129};
130
131/* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134struct skb_shared_info {
135        atomic_t        dataref;
136        unsigned short  nr_frags;
137        unsigned short  gso_size;
138        /* Warning: this field is not always filled in (UFO)! */
139        unsigned short  gso_segs;
140        unsigned short  gso_type;
141        unsigned int    ip6_frag_id;
142        struct sk_buff  *frag_list;
143        skb_frag_t      frags[MAX_SKB_FRAGS];
144};
145
146/* We divide dataref into two halves.  The higher 16 bits hold references
147 * to the payload part of skb->data.  The lower 16 bits hold references to
148 * the entire skb->data.  It is up to the users of the skb to agree on
149 * where the payload starts.
150 *
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
153 *
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
156 */
157#define SKB_DATAREF_SHIFT 16
158#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159
160struct skb_timeval {
161        u32     off_sec;
162        u32     off_usec;
163};
164
165
166enum {
167        SKB_FCLONE_UNAVAILABLE,
168        SKB_FCLONE_ORIG,
169        SKB_FCLONE_CLONE,
170};
171
172enum {
173        SKB_GSO_TCPV4 = 1 << 0,
174        SKB_GSO_UDP = 1 << 1,
175
176        /* This indicates the skb is from an untrusted source. */
177        SKB_GSO_DODGY = 1 << 2,
178
179        /* This indicates the tcp segment has CWR set. */
180        SKB_GSO_TCP_ECN = 1 << 3,
181
182        SKB_GSO_TCPV6 = 1 << 4,
183};
184
185/**
186 *      struct sk_buff - socket buffer
187 *      @next: Next buffer in list
188 *      @prev: Previous buffer in list
189 *      @sk: Socket we are owned by
190 *      @tstamp: Time we arrived
191 *      @dev: Device we arrived on/are leaving by
192 *      @input_dev: Device we arrived on
193 *      @h: Transport layer header
194 *      @nh: Network layer header
195 *      @mac: Link layer header
196 *      @dst: destination entry
197 *      @sp: the security path, used for xfrm
198 *      @cb: Control buffer. Free for use by every layer. Put private vars here
199 *      @len: Length of actual data
200 *      @data_len: Data length
201 *      @mac_len: Length of link layer header
202 *      @csum: Checksum
203 *      @local_df: allow local fragmentation
204 *      @cloned: Head may be cloned (check refcnt to be sure)
205 *      @nohdr: Payload reference only, must not modify header
206 *      @proto_data_valid: Protocol data validated since arriving at localhost
207 *      @proto_csum_blank: Protocol csum must be added before leaving localhost
208 *      @pkt_type: Packet class
209 *      @fclone: skbuff clone status
210 *      @ip_summed: Driver fed us an IP checksum
211 *      @priority: Packet queueing priority
212 *      @users: User count - see {datagram,tcp}.c
213 *      @protocol: Packet protocol from driver
214 *      @truesize: Buffer size
215 *      @head: Head of buffer
216 *      @data: Data head pointer
217 *      @tail: Tail pointer
218 *      @end: End pointer
219 *      @destructor: Destruct function
220 *      @nfmark: Can be used for communication between hooks
221 *      @nfct: Associated connection, if any
222 *      @ipvs_property: skbuff is owned by ipvs
223 *      @nfctinfo: Relationship of this skb to the connection
224 *      @nfct_reasm: netfilter conntrack re-assembly pointer
225 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
226 *      @tc_index: Traffic control index
227 *      @tc_verd: traffic control verdict
228 *      @dma_cookie: a cookie to one of several possible DMA operations
229 *              done by skb DMA functions
230 *      @secmark: security marking
231 */
232
233struct sk_buff {
234        /* These two members must be first. */
235        struct sk_buff          *next;
236        struct sk_buff          *prev;
237
238        struct sock             *sk;
239        struct skb_timeval      tstamp;
240        struct net_device       *dev;
241        struct net_device       *input_dev;
242
243        union {
244                struct tcphdr   *th;
245                struct udphdr   *uh;
246                struct icmphdr  *icmph;
247                struct igmphdr  *igmph;
248                struct iphdr    *ipiph;
249                struct ipv6hdr  *ipv6h;
250                unsigned char   *raw;
251        } h;
252
253        union {
254                struct iphdr    *iph;
255                struct ipv6hdr  *ipv6h;
256                struct arphdr   *arph;
257                unsigned char   *raw;
258        } nh;
259
260        union {
261                unsigned char   *raw;
262        } mac;
263
264        struct  dst_entry       *dst;
265        struct  sec_path        *sp;
266
267        /*
268         * This is the control buffer. It is free to use for every
269         * layer. Please put your private variables there. If you
270         * want to keep them across layers you have to do a skb_clone()
271         * first. This is owned by whoever has the skb queued ATM.
272         */
273        char                    cb[48];
274
275        unsigned int            len,
276                                data_len,
277                                mac_len,
278                                csum;
279        __u32                   priority;
280        __u8                    local_df:1,
281                                cloned:1,
282                                ip_summed:2,
283                                nohdr:1,
284                                nfctinfo:3;
285        __u8                    pkt_type:3,
286                                fclone:2,
287#ifndef CONFIG_XEN
288                                ipvs_property:1;
289#else
290                                ipvs_property:1,
291                                proto_data_valid:1,
292                                proto_csum_blank:1;
293#endif
294        __be16                  protocol;
295
296        void                    (*destructor)(struct sk_buff *skb);
297#ifdef CONFIG_NETFILTER
298        struct nf_conntrack     *nfct;
299#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
300        struct sk_buff          *nfct_reasm;
301#endif
302#ifdef CONFIG_BRIDGE_NETFILTER
303        struct nf_bridge_info   *nf_bridge;
304#endif
305        __u32                   nfmark;
306#endif /* CONFIG_NETFILTER */
307#ifdef CONFIG_NET_SCHED
308        __u16                   tc_index;       /* traffic control index */
309#ifdef CONFIG_NET_CLS_ACT
310        __u16                   tc_verd;        /* traffic control verdict */
311#endif
312#endif
313#ifdef CONFIG_NET_DMA
314        dma_cookie_t            dma_cookie;
315#endif
316#ifdef CONFIG_NETWORK_SECMARK
317        __u32                   secmark;
318#endif
319
320
321        /* These elements must be at the end, see alloc_skb() for details.  */
322        unsigned int            truesize;
323        atomic_t                users;
324        unsigned char           *head,
325                                *data,
326                                *tail,
327                                *end;
328};
329
330#ifdef __KERNEL__
331/*
332 *      Handling routines are only of interest to the kernel
333 */
334#include <linux/slab.h>
335
336#include <asm/system.h>
337
338extern void kfree_skb(struct sk_buff *skb);
339extern void            __kfree_skb(struct sk_buff *skb);
340extern struct sk_buff *__alloc_skb(unsigned int size,
341                                   gfp_t priority, int fclone);
342static inline struct sk_buff *alloc_skb(unsigned int size,
343                                        gfp_t priority)
344{
345        return __alloc_skb(size, priority, 0);
346}
347
348static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
349                                               gfp_t priority)
350{
351        return __alloc_skb(size, priority, 1);
352}
353
354extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
355                                            unsigned int size,
356                                            gfp_t priority);
357extern void            kfree_skbmem(struct sk_buff *skb);
358extern struct sk_buff *skb_clone(struct sk_buff *skb,
359                                 gfp_t priority);
360extern struct sk_buff *skb_copy(const struct sk_buff *skb,
361                                gfp_t priority);
362extern struct sk_buff *pskb_copy(struct sk_buff *skb,
363                                 gfp_t gfp_mask);
364extern int             pskb_expand_head(struct sk_buff *skb,
365                                        int nhead, int ntail,
366                                        gfp_t gfp_mask);
367extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
368                                            unsigned int headroom);
369extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
370                                       int newheadroom, int newtailroom,
371                                       gfp_t priority);
372extern int             skb_pad(struct sk_buff *skb, int pad);
373#define dev_kfree_skb(a)        kfree_skb(a)
374extern void           skb_over_panic(struct sk_buff *skb, int len,
375                                     void *here);
376extern void           skb_under_panic(struct sk_buff *skb, int len,
377                                      void *here);
378extern void           skb_truesize_bug(struct sk_buff *skb);
379
380static inline void skb_truesize_check(struct sk_buff *skb)
381{
382        if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
383                skb_truesize_bug(skb);
384}
385
386extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
387                        int getfrag(void *from, char *to, int offset,
388                        int len,int odd, struct sk_buff *skb),
389                        void *from, int length);
390
391struct skb_seq_state
392{
393        __u32           lower_offset;
394        __u32           upper_offset;
395        __u32           frag_idx;
396        __u32           stepped_offset;
397        struct sk_buff  *root_skb;
398        struct sk_buff  *cur_skb;
399        __u8            *frag_data;
400};
401
402extern void           skb_prepare_seq_read(struct sk_buff *skb,
403                                           unsigned int from, unsigned int to,
404                                           struct skb_seq_state *st);
405extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
406                                   struct skb_seq_state *st);
407extern void           skb_abort_seq_read(struct skb_seq_state *st);
408
409extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
410                                    unsigned int to, struct ts_config *config,
411                                    struct ts_state *state);
412
413/* Internal */
414#define skb_shinfo(SKB)         ((struct skb_shared_info *)((SKB)->end))
415
416/**
417 *      skb_queue_empty - check if a queue is empty
418 *      @list: queue head
419 *
420 *      Returns true if the queue is empty, false otherwise.
421 */
422static inline int skb_queue_empty(const struct sk_buff_head *list)
423{
424        return list->next == (struct sk_buff *)list;
425}
426
427/**
428 *      skb_get - reference buffer
429 *      @skb: buffer to reference
430 *
431 *      Makes another reference to a socket buffer and returns a pointer
432 *      to the buffer.
433 */
434static inline struct sk_buff *skb_get(struct sk_buff *skb)
435{
436        atomic_inc(&skb->users);
437        return skb;
438}
439
440/*
441 * If users == 1, we are the only owner and are can avoid redundant
442 * atomic change.
443 */
444
445/**
446 *      skb_cloned - is the buffer a clone
447 *      @skb: buffer to check
448 *
449 *      Returns true if the buffer was generated with skb_clone() and is
450 *      one of multiple shared copies of the buffer. Cloned buffers are
451 *      shared data so must not be written to under normal circumstances.
452 */
453static inline int skb_cloned(const struct sk_buff *skb)
454{
455        return skb->cloned &&
456               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
457}
458
459/**
460 *      skb_header_cloned - is the header a clone
461 *      @skb: buffer to check
462 *
463 *      Returns true if modifying the header part of the buffer requires
464 *      the data to be copied.
465 */
466static inline int skb_header_cloned(const struct sk_buff *skb)
467{
468        int dataref;
469
470        if (!skb->cloned)
471                return 0;
472
473        dataref = atomic_read(&skb_shinfo(skb)->dataref);
474        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
475        return dataref != 1;
476}
477
478/**
479 *      skb_header_release - release reference to header
480 *      @skb: buffer to operate on
481 *
482 *      Drop a reference to the header part of the buffer.  This is done
483 *      by acquiring a payload reference.  You must not read from the header
484 *      part of skb->data after this.
485 */
486static inline void skb_header_release(struct sk_buff *skb)
487{
488        BUG_ON(skb->nohdr);
489        skb->nohdr = 1;
490        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
491}
492
493/**
494 *      skb_shared - is the buffer shared
495 *      @skb: buffer to check
496 *
497 *      Returns true if more than one person has a reference to this
498 *      buffer.
499 */
500static inline int skb_shared(const struct sk_buff *skb)
501{
502        return atomic_read(&skb->users) != 1;
503}
504
505/**
506 *      skb_share_check - check if buffer is shared and if so clone it
507 *      @skb: buffer to check
508 *      @pri: priority for memory allocation
509 *
510 *      If the buffer is shared the buffer is cloned and the old copy
511 *      drops a reference. A new clone with a single reference is returned.
512 *      If the buffer is not shared the original buffer is returned. When
513 *      being called from interrupt status or with spinlocks held pri must
514 *      be GFP_ATOMIC.
515 *
516 *      NULL is returned on a memory allocation failure.
517 */
518static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
519                                              gfp_t pri)
520{
521        might_sleep_if(pri & __GFP_WAIT);
522        if (skb_shared(skb)) {
523                struct sk_buff *nskb = skb_clone(skb, pri);
524                kfree_skb(skb);
525                skb = nskb;
526        }
527        return skb;
528}
529
530/*
531 *      Copy shared buffers into a new sk_buff. We effectively do COW on
532 *      packets to handle cases where we have a local reader and forward
533 *      and a couple of other messy ones. The normal one is tcpdumping
534 *      a packet thats being forwarded.
535 */
536
537/**
538 *      skb_unshare - make a copy of a shared buffer
539 *      @skb: buffer to check
540 *      @pri: priority for memory allocation
541 *
542 *      If the socket buffer is a clone then this function creates a new
543 *      copy of the data, drops a reference count on the old copy and returns
544 *      the new copy with the reference count at 1. If the buffer is not a clone
545 *      the original buffer is returned. When called with a spinlock held or
546 *      from interrupt state @pri must be %GFP_ATOMIC
547 *
548 *      %NULL is returned on a memory allocation failure.
549 */
550static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
551                                          gfp_t pri)
552{
553        might_sleep_if(pri & __GFP_WAIT);
554        if (skb_cloned(skb)) {
555                struct sk_buff *nskb = skb_copy(skb, pri);
556                kfree_skb(skb); /* Free our shared copy */
557                skb = nskb;
558        }
559        return skb;
560}
561
562/**
563 *      skb_peek
564 *      @list_: list to peek at
565 *
566 *      Peek an &sk_buff. Unlike most other operations you _MUST_
567 *      be careful with this one. A peek leaves the buffer on the
568 *      list and someone else may run off with it. You must hold
569 *      the appropriate locks or have a private queue to do this.
570 *
571 *      Returns %NULL for an empty list or a pointer to the head element.
572 *      The reference count is not incremented and the reference is therefore
573 *      volatile. Use with caution.
574 */
575static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
576{
577        struct sk_buff *list = ((struct sk_buff *)list_)->next;
578        if (list == (struct sk_buff *)list_)
579                list = NULL;
580        return list;
581}
582
583/**
584 *      skb_peek_tail
585 *      @list_: list to peek at
586 *
587 *      Peek an &sk_buff. Unlike most other operations you _MUST_
588 *      be careful with this one. A peek leaves the buffer on the
589 *      list and someone else may run off with it. You must hold
590 *      the appropriate locks or have a private queue to do this.
591 *
592 *      Returns %NULL for an empty list or a pointer to the tail element.
593 *      The reference count is not incremented and the reference is therefore
594 *      volatile. Use with caution.
595 */
596static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
597{
598        struct sk_buff *list = ((struct sk_buff *)list_)->prev;
599        if (list == (struct sk_buff *)list_)
600                list = NULL;
601        return list;
602}
603
604/**
605 *      skb_queue_len   - get queue length
606 *      @list_: list to measure
607 *
608 *      Return the length of an &sk_buff queue.
609 */
610static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
611{
612        return list_->qlen;
613}
614
615/*
616 * This function creates a split out lock class for each invocation;
617 * this is needed for now since a whole lot of users of the skb-queue
618 * infrastructure in drivers have different locking usage (in hardirq)
619 * than the networking core (in softirq only). In the long run either the
620 * network layer or drivers should need annotation to consolidate the
621 * main types of usage into 3 classes.
622 */
623static inline void skb_queue_head_init(struct sk_buff_head *list)
624{
625        spin_lock_init(&list->lock);
626        list->prev = list->next = (struct sk_buff *)list;
627        list->qlen = 0;
628}
629
630/*
631 *      Insert an sk_buff at the start of a list.
632 *
633 *      The "__skb_xxxx()" functions are the non-atomic ones that
634 *      can only be called with interrupts disabled.
635 */
636
637/**
638 *      __skb_queue_after - queue a buffer at the list head
639 *      @list: list to use
640 *      @prev: place after this buffer
641 *      @newsk: buffer to queue
642 *
643 *      Queue a buffer int the middle of a list. This function takes no locks
644 *      and you must therefore hold required locks before calling it.
645 *
646 *      A buffer cannot be placed on two lists at the same time.
647 */
648static inline void __skb_queue_after(struct sk_buff_head *list,
649                                     struct sk_buff *prev,
650                                     struct sk_buff *newsk)
651{
652        struct sk_buff *next;
653        list->qlen++;
654
655        next = prev->next;
656        newsk->next = next;
657        newsk->prev = prev;
658        next->prev  = prev->next = newsk;
659}
660
661/**
662 *      __skb_queue_head - queue a buffer at the list head
663 *      @list: list to use
664 *      @newsk: buffer to queue
665 *
666 *      Queue a buffer at the start of a list. This function takes no locks
667 *      and you must therefore hold required locks before calling it.
668 *
669 *      A buffer cannot be placed on two lists at the same time.
670 */
671extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
672static inline void __skb_queue_head(struct sk_buff_head *list,
673                                    struct sk_buff *newsk)
674{
675        __skb_queue_after(list, (struct sk_buff *)list, newsk);
676}
677
678/**
679 *      __skb_queue_tail - queue a buffer at the list tail
680 *      @list: list to use
681 *      @newsk: buffer to queue
682 *
683 *      Queue a buffer at the end of a list. This function takes no locks
684 *      and you must therefore hold required locks before calling it.
685 *
686 *      A buffer cannot be placed on two lists at the same time.
687 */
688extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
689static inline void __skb_queue_tail(struct sk_buff_head *list,
690                                   struct sk_buff *newsk)
691{
692        struct sk_buff *prev, *next;
693
694        list->qlen++;
695        next = (struct sk_buff *)list;
696        prev = next->prev;
697        newsk->next = next;
698        newsk->prev = prev;
699        next->prev  = prev->next = newsk;
700}
701
702
703/**
704 *      __skb_dequeue - remove from the head of the queue
705 *      @list: list to dequeue from
706 *
707 *      Remove the head of the list. This function does not take any locks
708 *      so must be used with appropriate locks held only. The head item is
709 *      returned or %NULL if the list is empty.
710 */
711extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
712static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
713{
714        struct sk_buff *next, *prev, *result;
715
716        prev = (struct sk_buff *) list;
717        next = prev->next;
718        result = NULL;
719        if (next != prev) {
720                result       = next;
721                next         = next->next;
722                list->qlen--;
723                next->prev   = prev;
724                prev->next   = next;
725                result->next = result->prev = NULL;
726        }
727        return result;
728}
729
730
731/*
732 *      Insert a packet on a list.
733 */
734extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
735static inline void __skb_insert(struct sk_buff *newsk,
736                                struct sk_buff *prev, struct sk_buff *next,
737                                struct sk_buff_head *list)
738{
739        newsk->next = next;
740        newsk->prev = prev;
741        next->prev  = prev->next = newsk;
742        list->qlen++;
743}
744
745/*
746 *      Place a packet after a given packet in a list.
747 */
748extern void        skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
749static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
750{
751        __skb_insert(newsk, old, old->next, list);
752}
753
754/*
755 * remove sk_buff from list. _Must_ be called atomically, and with
756 * the list known..
757 */
758extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
759static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
760{
761        struct sk_buff *next, *prev;
762
763        list->qlen--;
764        next       = skb->next;
765        prev       = skb->prev;
766        skb->next  = skb->prev = NULL;
767        next->prev = prev;
768        prev->next = next;
769}
770
771
772/* XXX: more streamlined implementation */
773
774/**
775 *      __skb_dequeue_tail - remove from the tail of the queue
776 *      @list: list to dequeue from
777 *
778 *      Remove the tail of the list. This function does not take any locks
779 *      so must be used with appropriate locks held only. The tail item is
780 *      returned or %NULL if the list is empty.
781 */
782extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
783static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
784{
785        struct sk_buff *skb = skb_peek_tail(list);
786        if (skb)
787                __skb_unlink(skb, list);
788        return skb;
789}
790
791
792static inline int skb_is_nonlinear(const struct sk_buff *skb)
793{
794        return skb->data_len;
795}
796
797static inline unsigned int skb_headlen(const struct sk_buff *skb)
798{
799        return skb->len - skb->data_len;
800}
801
802static inline int skb_pagelen(const struct sk_buff *skb)
803{
804        int i, len = 0;
805
806        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
807                len += skb_shinfo(skb)->frags[i].size;
808        return len + skb_headlen(skb);
809}
810
811static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
812                                      struct page *page, int off, int size)
813{
814        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
815
816        frag->page                = page;
817        frag->page_offset         = off;
818        frag->size                = size;
819        skb_shinfo(skb)->nr_frags = i + 1;
820}
821
822#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
823#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
824#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
825
826/*
827 *      Add data to an sk_buff
828 */
829static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
830{
831        unsigned char *tmp = skb->tail;
832        SKB_LINEAR_ASSERT(skb);
833        skb->tail += len;
834        skb->len  += len;
835        return tmp;
836}
837
838/**
839 *      skb_put - add data to a buffer
840 *      @skb: buffer to use
841 *      @len: amount of data to add
842 *
843 *      This function extends the used data area of the buffer. If this would
844 *      exceed the total buffer size the kernel will panic. A pointer to the
845 *      first byte of the extra data is returned.
846 */
847static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
848{
849        unsigned char *tmp = skb->tail;
850        SKB_LINEAR_ASSERT(skb);
851        skb->tail += len;
852        skb->len  += len;
853        if (unlikely(skb->tail>skb->end))
854                skb_over_panic(skb, len, current_text_addr());
855        return tmp;
856}
857
858static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
859{
860        skb->data -= len;
861        skb->len  += len;
862        return skb->data;
863}
864
865/**
866 *      skb_push - add data to the start of a buffer
867 *      @skb: buffer to use
868 *      @len: amount of data to add
869 *
870 *      This function extends the used data area of the buffer at the buffer
871 *      start. If this would exceed the total buffer headroom the kernel will
872 *      panic. A pointer to the first byte of the extra data is returned.
873 */
874static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
875{
876        skb->data -= len;
877        skb->len  += len;
878        if (unlikely(skb->data<skb->head))
879                skb_under_panic(skb, len, current_text_addr());
880        return skb->data;
881}
882
883static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
884{
885        skb->len -= len;
886        BUG_ON(skb->len < skb->data_len);
887        return skb->data += len;
888}
889
890/**
891 *      skb_pull - remove data from the start of a buffer
892 *      @skb: buffer to use
893 *      @len: amount of data to remove
894 *
895 *      This function removes data from the start of a buffer, returning
896 *      the memory to the headroom. A pointer to the next data in the buffer
897 *      is returned. Once the data has been pulled future pushes will overwrite
898 *      the old data.
899 */
900static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
901{
902        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
903}
904
905extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
906
907static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
908{
909        if (len > skb_headlen(skb) &&
910            !__pskb_pull_tail(skb, len-skb_headlen(skb)))
911                return NULL;
912        skb->len -= len;
913        return skb->data += len;
914}
915
916static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
917{
918        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
919}
920
921static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
922{
923        if (likely(len <= skb_headlen(skb)))
924                return 1;
925        if (unlikely(len > skb->len))
926                return 0;
927        return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
928}
929
930/**
931 *      skb_headroom - bytes at buffer head
932 *      @skb: buffer to check
933 *
934 *      Return the number of bytes of free space at the head of an &sk_buff.
935 */
936static inline int skb_headroom(const struct sk_buff *skb)
937{
938        return skb->data - skb->head;
939}
940
941/**
942 *      skb_tailroom - bytes at buffer end
943 *      @skb: buffer to check
944 *
945 *      Return the number of bytes of free space at the tail of an sk_buff
946 */
947static inline int skb_tailroom(const struct sk_buff *skb)
948{
949        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
950}
951
952/**
953 *      skb_reserve - adjust headroom
954 *      @skb: buffer to alter
955 *      @len: bytes to move
956 *
957 *      Increase the headroom of an empty &sk_buff by reducing the tail
958 *      room. This is only allowed for an empty buffer.
959 */
960static inline void skb_reserve(struct sk_buff *skb, int len)
961{
962        skb->data += len;
963        skb->tail += len;
964}
965
966/*
967 * CPUs often take a performance hit when accessing unaligned memory
968 * locations. The actual performance hit varies, it can be small if the
969 * hardware handles it or large if we have to take an exception and fix it
970 * in software.
971 *
972 * Since an ethernet header is 14 bytes network drivers often end up with
973 * the IP header at an unaligned offset. The IP header can be aligned by
974 * shifting the start of the packet by 2 bytes. Drivers should do this
975 * with:
976 *
977 * skb_reserve(NET_IP_ALIGN);
978 *
979 * The downside to this alignment of the IP header is that the DMA is now
980 * unaligned. On some architectures the cost of an unaligned DMA is high
981 * and this cost outweighs the gains made by aligning the IP header.
982 *
983 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
984 * to be overridden.
985 */
986#ifndef NET_IP_ALIGN
987#define NET_IP_ALIGN    2
988#endif
989
990/*
991 * The networking layer reserves some headroom in skb data (via
992 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
993 * the header has to grow. In the default case, if the header has to grow
994 * 16 bytes or less we avoid the reallocation.
995 *
996 * Unfortunately this headroom changes the DMA alignment of the resulting
997 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
998 * on some architectures. An architecture can override this value,
999 * perhaps setting it to a cacheline in size (since that will maintain
1000 * cacheline alignment of the DMA). It must be a power of 2.
1001 *
1002 * Various parts of the networking layer expect at least 16 bytes of
1003 * headroom, you should not reduce this.
1004 */
1005#ifndef NET_SKB_PAD
1006#define NET_SKB_PAD     16
1007#endif
1008
1009extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1010
1011static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1012{
1013        if (unlikely(skb->data_len)) {
1014                WARN_ON(1);
1015                return;
1016        }
1017        skb->len  = len;
1018        skb->tail = skb->data + len;
1019}
1020
1021/**
1022 *      skb_trim - remove end from a buffer
1023 *      @skb: buffer to alter
1024 *      @len: new length
1025 *
1026 *      Cut the length of a buffer down by removing data from the tail. If
1027 *      the buffer is already under the length specified it is not modified.
1028 *      The skb must be linear.
1029 */
1030static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1031{
1032        if (skb->len > len)
1033                __skb_trim(skb, len);
1034}
1035
1036
1037static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1038{
1039        if (skb->data_len)
1040                return ___pskb_trim(skb, len);
1041        __skb_trim(skb, len);
1042        return 0;
1043}
1044
1045static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1046{
1047        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1048}
1049
1050/**
1051 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1052 *      @skb: buffer to alter
1053 *      @len: new length
1054 *
1055 *      This is identical to pskb_trim except that the caller knows that
1056 *      the skb is not cloned so we should never get an error due to out-
1057 *      of-memory.
1058 */
1059static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1060{
1061        int err = pskb_trim(skb, len);
1062        BUG_ON(err);
1063}
1064
1065/**
1066 *      skb_orphan - orphan a buffer
1067 *      @skb: buffer to orphan
1068 *
1069 *      If a buffer currently has an owner then we call the owner's
1070 *      destructor function and make the @skb unowned. The buffer continues
1071 *      to exist but is no longer charged to its former owner.
1072 */
1073static inline void skb_orphan(struct sk_buff *skb)
1074{
1075        if (skb->destructor)
1076                skb->destructor(skb);
1077        skb->destructor = NULL;
1078        skb->sk         = NULL;
1079}
1080
1081/**
1082 *      __skb_queue_purge - empty a list
1083 *      @list: list to empty
1084 *
1085 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1086 *      the list and one reference dropped. This function does not take the
1087 *      list lock and the caller must hold the relevant locks to use it.
1088 */
1089extern void skb_queue_purge(struct sk_buff_head *list);
1090static inline void __skb_queue_purge(struct sk_buff_head *list)
1091{
1092        struct sk_buff *skb;
1093        while ((skb = __skb_dequeue(list)) != NULL)
1094                kfree_skb(skb);
1095}
1096
1097/**
1098 *      __dev_alloc_skb - allocate an skbuff for receiving
1099 *      @length: length to allocate
1100 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1101 *
1102 *      Allocate a new &sk_buff and assign it a usage count of one. The
1103 *      buffer has unspecified headroom built in. Users should allocate
1104 *      the headroom they think they need without accounting for the
1105 *      built in space. The built in space is used for optimisations.
1106 *
1107 *      %NULL is returned if there is no free memory.
1108 */
1109static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1110                                              gfp_t gfp_mask)
1111{
1112        struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1113        if (likely(skb))
1114                skb_reserve(skb, NET_SKB_PAD);
1115        return skb;
1116}
1117
1118/**
1119 *      dev_alloc_skb - allocate an skbuff for receiving
1120 *      @length: length to allocate
1121 *
1122 *      Allocate a new &sk_buff and assign it a usage count of one. The
1123 *      buffer has unspecified headroom built in. Users should allocate
1124 *      the headroom they think they need without accounting for the
1125 *      built in space. The built in space is used for optimisations.
1126 *
1127 *      %NULL is returned if there is no free memory. Although this function
1128 *      allocates memory it can be called from an interrupt.
1129 */
1130static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1131{
1132        return __dev_alloc_skb(length, GFP_ATOMIC);
1133}
1134
1135extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1136                unsigned int length, gfp_t gfp_mask);
1137
1138/**
1139 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1140 *      @dev: network device to receive on
1141 *      @length: length to allocate
1142 *
1143 *      Allocate a new &sk_buff and assign it a usage count of one. The
1144 *      buffer has unspecified headroom built in. Users should allocate
1145 *      the headroom they think they need without accounting for the
1146 *      built in space. The built in space is used for optimisations.
1147 *
1148 *      %NULL is returned if there is no free memory. Although this function
1149 *      allocates memory it can be called from an interrupt.
1150 */
1151static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1152                unsigned int length)
1153{
1154        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1155}
1156
1157/**
1158 *      skb_cow - copy header of skb when it is required
1159 *      @skb: buffer to cow
1160 *      @headroom: needed headroom
1161 *
1162 *      If the skb passed lacks sufficient headroom or its data part
1163 *      is shared, data is reallocated. If reallocation fails, an error
1164 *      is returned and original skb is not changed.
1165 *
1166 *      The result is skb with writable area skb->head...skb->tail
1167 *      and at least @headroom of space at head.
1168 */
1169static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1170{
1171        int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1172                        skb_headroom(skb);
1173
1174        if (delta < 0)
1175                delta = 0;
1176
1177        if (delta || skb_cloned(skb))
1178                return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1179                                ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1180        return 0;
1181}
1182
1183/**
1184 *      skb_padto       - pad an skbuff up to a minimal size
1185 *      @skb: buffer to pad
1186 *      @len: minimal length
1187 *
1188 *      Pads up a buffer to ensure the trailing bytes exist and are
1189 *      blanked. If the buffer already contains sufficient data it
1190 *      is untouched. Otherwise it is extended. Returns zero on
1191 *      success. The skb is freed on error.
1192 */
1193 
1194static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1195{
1196        unsigned int size = skb->len;
1197        if (likely(size >= len))
1198                return 0;
1199        return skb_pad(skb, len-size);
1200}
1201
1202static inline int skb_add_data(struct sk_buff *skb,
1203                               char __user *from, int copy)
1204{
1205        const int off = skb->len;
1206
1207        if (skb->ip_summed == CHECKSUM_NONE) {
1208                int err = 0;
1209                unsigned int csum = csum_and_copy_from_user(from,
1210                                                            skb_put(skb, copy),
1211                                                            copy, 0, &err);
1212                if (!err) {
1213                        skb->csum = csum_block_add(skb->csum, csum, off);
1214                        return 0;
1215                }
1216        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1217                return 0;
1218
1219        __skb_trim(skb, off);
1220        return -EFAULT;
1221}
1222
1223static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1224                                   struct page *page, int off)
1225{
1226        if (i) {
1227                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1228
1229                return page == frag->page &&
1230                       off == frag->page_offset + frag->size;
1231        }
1232        return 0;
1233}
1234
1235static inline int __skb_linearize(struct sk_buff *skb)
1236{
1237        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1238}
1239
1240/**
1241 *      skb_linearize - convert paged skb to linear one
1242 *      @skb: buffer to linarize
1243 *
1244 *      If there is no free memory -ENOMEM is returned, otherwise zero
1245 *      is returned and the old skb data released.
1246 */
1247static inline int skb_linearize(struct sk_buff *skb)
1248{
1249        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1250}
1251
1252/**
1253 *      skb_linearize_cow - make sure skb is linear and writable
1254 *      @skb: buffer to process
1255 *
1256 *      If there is no free memory -ENOMEM is returned, otherwise zero
1257 *      is returned and the old skb data released.
1258 */
1259static inline int skb_linearize_cow(struct sk_buff *skb)
1260{
1261        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1262               __skb_linearize(skb) : 0;
1263}
1264
1265/**
1266 *      skb_postpull_rcsum - update checksum for received skb after pull
1267 *      @skb: buffer to update
1268 *      @start: start of data before pull
1269 *      @len: length of data pulled
1270 *
1271 *      After doing a pull on a received packet, you need to call this to
1272 *      update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1273 *      so that it can be recomputed from scratch.
1274 */
1275
1276static inline void skb_postpull_rcsum(struct sk_buff *skb,
1277                                      const void *start, unsigned int len)
1278{
1279        if (skb->ip_summed == CHECKSUM_HW)
1280                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1281}
1282
1283unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1284
1285/**
1286 *      pskb_trim_rcsum - trim received skb and update checksum
1287 *      @skb: buffer to trim
1288 *      @len: new length
1289 *
1290 *      This is exactly the same as pskb_trim except that it ensures the
1291 *      checksum of received packets are still valid after the operation.
1292 */
1293
1294static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1295{
1296        if (likely(len >= skb->len))
1297                return 0;
1298        if (skb->ip_summed == CHECKSUM_HW)
1299                skb->ip_summed = CHECKSUM_NONE;
1300        return __pskb_trim(skb, len);
1301}
1302
1303static inline void *kmap_skb_frag(const skb_frag_t *frag)
1304{
1305#ifdef CONFIG_HIGHMEM
1306        BUG_ON(in_irq());
1307
1308        local_bh_disable();
1309#endif
1310        return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1311}
1312
1313static inline void kunmap_skb_frag(void *vaddr)
1314{
1315        kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1316#ifdef CONFIG_HIGHMEM
1317        local_bh_enable();
1318#endif
1319}
1320
1321#define skb_queue_walk(queue, skb) \
1322                for (skb = (queue)->next;                                       \
1323                     prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1324                     skb = skb->next)
1325
1326#define skb_queue_reverse_walk(queue, skb) \
1327                for (skb = (queue)->prev;                                       \
1328                     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1329                     skb = skb->prev)
1330
1331
1332extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1333                                         int noblock, int *err);
1334extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1335                                     struct poll_table_struct *wait);
1336extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1337                                               int offset, struct iovec *to,
1338                                               int size);
1339extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1340                                                        int hlen,
1341                                                        struct iovec *iov);
1342extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1343extern void            skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1344                                         unsigned int flags);
1345extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1346                                    int len, unsigned int csum);
1347extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1348                                     void *to, int len);
1349extern int             skb_store_bits(const struct sk_buff *skb, int offset,
1350                                      void *from, int len);
1351extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1352                                              int offset, u8 *to, int len,
1353                                              unsigned int csum);
1354extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1355extern void            skb_split(struct sk_buff *skb,
1356                                 struct sk_buff *skb1, const u32 len);
1357
1358extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1359
1360static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1361                                       int len, void *buffer)
1362{
1363        int hlen = skb_headlen(skb);
1364
1365        if (hlen - offset >= len)
1366                return skb->data + offset;
1367
1368        if (skb_copy_bits(skb, offset, buffer, len) < 0)
1369                return NULL;
1370
1371        return buffer;
1372}
1373
1374extern void skb_init(void);
1375extern void skb_add_mtu(int mtu);
1376
1377/**
1378 *      skb_get_timestamp - get timestamp from a skb
1379 *      @skb: skb to get stamp from
1380 *      @stamp: pointer to struct timeval to store stamp in
1381 *
1382 *      Timestamps are stored in the skb as offsets to a base timestamp.
1383 *      This function converts the offset back to a struct timeval and stores
1384 *      it in stamp.
1385 */
1386static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1387{
1388        stamp->tv_sec  = skb->tstamp.off_sec;
1389        stamp->tv_usec = skb->tstamp.off_usec;
1390}
1391
1392/**
1393 *      skb_set_timestamp - set timestamp of a skb
1394 *      @skb: skb to set stamp of
1395 *      @stamp: pointer to struct timeval to get stamp from
1396 *
1397 *      Timestamps are stored in the skb as offsets to a base timestamp.
1398 *      This function converts a struct timeval to an offset and stores
1399 *      it in the skb.
1400 */
1401static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1402{
1403        skb->tstamp.off_sec  = stamp->tv_sec;
1404        skb->tstamp.off_usec = stamp->tv_usec;
1405}
1406
1407extern void __net_timestamp(struct sk_buff *skb);
1408
1409extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1410
1411/**
1412 *      skb_checksum_complete - Calculate checksum of an entire packet
1413 *      @skb: packet to process
1414 *
1415 *      This function calculates the checksum over the entire packet plus
1416 *      the value of skb->csum.  The latter can be used to supply the
1417 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1418 *      checksum.
1419 *
1420 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1421 *      this function can be used to verify that checksum on received
1422 *      packets.  In that case the function should return zero if the
1423 *      checksum is correct.  In particular, this function will return zero
1424 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1425 *      hardware has already verified the correctness of the checksum.
1426 */
1427static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1428{
1429        return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1430                __skb_checksum_complete(skb);
1431}
1432
1433#ifdef CONFIG_NETFILTER
1434static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1435{
1436        if (nfct && atomic_dec_and_test(&nfct->use))
1437                nfct->destroy(nfct);
1438}
1439static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1440{
1441        if (nfct)
1442                atomic_inc(&nfct->use);
1443}
1444#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1445static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1446{
1447        if (skb)
1448                atomic_inc(&skb->users);
1449}
1450static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1451{
1452        if (skb)
1453                kfree_skb(skb);
1454}
1455#endif
1456#ifdef CONFIG_BRIDGE_NETFILTER
1457static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1458{
1459        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1460                kfree(nf_bridge);
1461}
1462static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1463{
1464        if (nf_bridge)
1465                atomic_inc(&nf_bridge->use);
1466}
1467#endif /* CONFIG_BRIDGE_NETFILTER */
1468static inline void nf_reset(struct sk_buff *skb)
1469{
1470        nf_conntrack_put(skb->nfct);
1471        skb->nfct = NULL;
1472#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1473        nf_conntrack_put_reasm(skb->nfct_reasm);
1474        skb->nfct_reasm = NULL;
1475#endif
1476#ifdef CONFIG_BRIDGE_NETFILTER
1477        nf_bridge_put(skb->nf_bridge);
1478        skb->nf_bridge = NULL;
1479#endif
1480}
1481
1482#else /* CONFIG_NETFILTER */
1483static inline void nf_reset(struct sk_buff *skb) {}
1484#endif /* CONFIG_NETFILTER */
1485
1486#ifdef CONFIG_NETWORK_SECMARK
1487static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1488{
1489        to->secmark = from->secmark;
1490}
1491
1492static inline void skb_init_secmark(struct sk_buff *skb)
1493{
1494        skb->secmark = 0;
1495}
1496#else
1497static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1498{ }
1499
1500static inline void skb_init_secmark(struct sk_buff *skb)
1501{ }
1502#endif
1503
1504static inline int skb_is_gso(const struct sk_buff *skb)
1505{
1506        return skb_shinfo(skb)->gso_size;
1507}
1508
1509#endif  /* __KERNEL__ */
1510#endif  /* _LINUX_SKBUFF_H */
Note: See TracBrowser for help on using the repository browser.