1 | /* |
---|
2 | * ARM PrimeCell Timer modules. |
---|
3 | * |
---|
4 | * Copyright (c) 2005-2006 CodeSourcery. |
---|
5 | * Written by Paul Brook |
---|
6 | * |
---|
7 | * This code is licenced under the GPL. |
---|
8 | */ |
---|
9 | |
---|
10 | #include "vl.h" |
---|
11 | #include "arm_pic.h" |
---|
12 | |
---|
13 | /* Common timer implementation. */ |
---|
14 | |
---|
15 | #define TIMER_CTRL_ONESHOT (1 << 0) |
---|
16 | #define TIMER_CTRL_32BIT (1 << 1) |
---|
17 | #define TIMER_CTRL_DIV1 (0 << 2) |
---|
18 | #define TIMER_CTRL_DIV16 (1 << 2) |
---|
19 | #define TIMER_CTRL_DIV256 (2 << 2) |
---|
20 | #define TIMER_CTRL_IE (1 << 5) |
---|
21 | #define TIMER_CTRL_PERIODIC (1 << 6) |
---|
22 | #define TIMER_CTRL_ENABLE (1 << 7) |
---|
23 | |
---|
24 | typedef struct { |
---|
25 | int64_t next_time; |
---|
26 | int64_t expires; |
---|
27 | int64_t loaded; |
---|
28 | QEMUTimer *timer; |
---|
29 | uint32_t control; |
---|
30 | uint32_t count; |
---|
31 | uint32_t limit; |
---|
32 | int raw_freq; |
---|
33 | int freq; |
---|
34 | int int_level; |
---|
35 | void *pic; |
---|
36 | int irq; |
---|
37 | } arm_timer_state; |
---|
38 | |
---|
39 | /* Calculate the new expiry time of the given timer. */ |
---|
40 | |
---|
41 | static void arm_timer_reload(arm_timer_state *s) |
---|
42 | { |
---|
43 | int64_t delay; |
---|
44 | |
---|
45 | s->loaded = s->expires; |
---|
46 | delay = muldiv64(s->count, ticks_per_sec, s->freq); |
---|
47 | if (delay == 0) |
---|
48 | delay = 1; |
---|
49 | s->expires += delay; |
---|
50 | } |
---|
51 | |
---|
52 | /* Check all active timers, and schedule the next timer interrupt. */ |
---|
53 | |
---|
54 | static void arm_timer_update(arm_timer_state *s, int64_t now) |
---|
55 | { |
---|
56 | int64_t next; |
---|
57 | |
---|
58 | /* Ignore disabled timers. */ |
---|
59 | if ((s->control & TIMER_CTRL_ENABLE) == 0) |
---|
60 | return; |
---|
61 | /* Ignore expired one-shot timers. */ |
---|
62 | if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT)) |
---|
63 | return; |
---|
64 | if (s->expires - now <= 0) { |
---|
65 | /* Timer has expired. */ |
---|
66 | s->int_level = 1; |
---|
67 | if (s->control & TIMER_CTRL_ONESHOT) { |
---|
68 | /* One-shot. */ |
---|
69 | s->count = 0; |
---|
70 | } else { |
---|
71 | if ((s->control & TIMER_CTRL_PERIODIC) == 0) { |
---|
72 | /* Free running. */ |
---|
73 | if (s->control & TIMER_CTRL_32BIT) |
---|
74 | s->count = 0xffffffff; |
---|
75 | else |
---|
76 | s->count = 0xffff; |
---|
77 | } else { |
---|
78 | /* Periodic. */ |
---|
79 | s->count = s->limit; |
---|
80 | } |
---|
81 | } |
---|
82 | } |
---|
83 | while (s->expires - now <= 0) { |
---|
84 | arm_timer_reload(s); |
---|
85 | } |
---|
86 | /* Update interrupts. */ |
---|
87 | if (s->int_level && (s->control & TIMER_CTRL_IE)) { |
---|
88 | pic_set_irq_new(s->pic, s->irq, 1); |
---|
89 | } else { |
---|
90 | pic_set_irq_new(s->pic, s->irq, 0); |
---|
91 | } |
---|
92 | |
---|
93 | next = now; |
---|
94 | if (next - s->expires < 0) |
---|
95 | next = s->expires; |
---|
96 | |
---|
97 | /* Schedule the next timer interrupt. */ |
---|
98 | if (next == now) { |
---|
99 | qemu_del_timer(s->timer); |
---|
100 | s->next_time = 0; |
---|
101 | } else if (next != s->next_time) { |
---|
102 | qemu_mod_timer(s->timer, next); |
---|
103 | s->next_time = next; |
---|
104 | } |
---|
105 | } |
---|
106 | |
---|
107 | /* Return the current value of the timer. */ |
---|
108 | static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now) |
---|
109 | { |
---|
110 | int64_t elapsed; |
---|
111 | int64_t period; |
---|
112 | |
---|
113 | if (s->count == 0) |
---|
114 | return 0; |
---|
115 | if ((s->control & TIMER_CTRL_ENABLE) == 0) |
---|
116 | return s->count; |
---|
117 | elapsed = now - s->loaded; |
---|
118 | period = s->expires - s->loaded; |
---|
119 | /* If the timer should have expired then return 0. This can happen |
---|
120 | when the host timer signal doesnt occur immediately. It's better to |
---|
121 | have a timer appear to sit at zero for a while than have it wrap |
---|
122 | around before the guest interrupt is raised. */ |
---|
123 | /* ??? Could we trigger the interrupt here? */ |
---|
124 | if (elapsed > period) |
---|
125 | return 0; |
---|
126 | /* We need to calculate count * elapsed / period without overfowing. |
---|
127 | Scale both elapsed and period so they fit in a 32-bit int. */ |
---|
128 | while (period != (int32_t)period) { |
---|
129 | period >>= 1; |
---|
130 | elapsed >>= 1; |
---|
131 | } |
---|
132 | return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed) |
---|
133 | / (int32_t)period; |
---|
134 | } |
---|
135 | |
---|
136 | uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset) |
---|
137 | { |
---|
138 | arm_timer_state *s = (arm_timer_state *)opaque; |
---|
139 | |
---|
140 | switch (offset >> 2) { |
---|
141 | case 0: /* TimerLoad */ |
---|
142 | case 6: /* TimerBGLoad */ |
---|
143 | return s->limit; |
---|
144 | case 1: /* TimerValue */ |
---|
145 | return arm_timer_getcount(s, qemu_get_clock(vm_clock)); |
---|
146 | case 2: /* TimerControl */ |
---|
147 | return s->control; |
---|
148 | case 4: /* TimerRIS */ |
---|
149 | return s->int_level; |
---|
150 | case 5: /* TimerMIS */ |
---|
151 | if ((s->control & TIMER_CTRL_IE) == 0) |
---|
152 | return 0; |
---|
153 | return s->int_level; |
---|
154 | default: |
---|
155 | cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset); |
---|
156 | return 0; |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | static void arm_timer_write(void *opaque, target_phys_addr_t offset, |
---|
161 | uint32_t value) |
---|
162 | { |
---|
163 | arm_timer_state *s = (arm_timer_state *)opaque; |
---|
164 | int64_t now; |
---|
165 | |
---|
166 | now = qemu_get_clock(vm_clock); |
---|
167 | switch (offset >> 2) { |
---|
168 | case 0: /* TimerLoad */ |
---|
169 | s->limit = value; |
---|
170 | s->count = value; |
---|
171 | s->expires = now; |
---|
172 | arm_timer_reload(s); |
---|
173 | break; |
---|
174 | case 1: /* TimerValue */ |
---|
175 | /* ??? Linux seems to want to write to this readonly register. |
---|
176 | Ignore it. */ |
---|
177 | break; |
---|
178 | case 2: /* TimerControl */ |
---|
179 | if (s->control & TIMER_CTRL_ENABLE) { |
---|
180 | /* Pause the timer if it is running. This may cause some |
---|
181 | inaccuracy dure to rounding, but avoids a whole lot of other |
---|
182 | messyness. */ |
---|
183 | s->count = arm_timer_getcount(s, now); |
---|
184 | } |
---|
185 | s->control = value; |
---|
186 | s->freq = s->raw_freq; |
---|
187 | /* ??? Need to recalculate expiry time after changing divisor. */ |
---|
188 | switch ((value >> 2) & 3) { |
---|
189 | case 1: s->freq >>= 4; break; |
---|
190 | case 2: s->freq >>= 8; break; |
---|
191 | } |
---|
192 | if (s->control & TIMER_CTRL_ENABLE) { |
---|
193 | /* Restart the timer if still enabled. */ |
---|
194 | s->expires = now; |
---|
195 | arm_timer_reload(s); |
---|
196 | } |
---|
197 | break; |
---|
198 | case 3: /* TimerIntClr */ |
---|
199 | s->int_level = 0; |
---|
200 | break; |
---|
201 | case 6: /* TimerBGLoad */ |
---|
202 | s->limit = value; |
---|
203 | break; |
---|
204 | default: |
---|
205 | cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset); |
---|
206 | } |
---|
207 | arm_timer_update(s, now); |
---|
208 | } |
---|
209 | |
---|
210 | static void arm_timer_tick(void *opaque) |
---|
211 | { |
---|
212 | int64_t now; |
---|
213 | |
---|
214 | now = qemu_get_clock(vm_clock); |
---|
215 | arm_timer_update((arm_timer_state *)opaque, now); |
---|
216 | } |
---|
217 | |
---|
218 | static void *arm_timer_init(uint32_t freq, void *pic, int irq) |
---|
219 | { |
---|
220 | arm_timer_state *s; |
---|
221 | |
---|
222 | s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state)); |
---|
223 | s->pic = pic; |
---|
224 | s->irq = irq; |
---|
225 | s->raw_freq = s->freq = 1000000; |
---|
226 | s->control = TIMER_CTRL_IE; |
---|
227 | s->count = 0xffffffff; |
---|
228 | |
---|
229 | s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s); |
---|
230 | /* ??? Save/restore. */ |
---|
231 | return s; |
---|
232 | } |
---|
233 | |
---|
234 | /* ARM PrimeCell SP804 dual timer module. |
---|
235 | Docs for this device don't seem to be publicly available. This |
---|
236 | implementation is based on gueswork, the linux kernel sources and the |
---|
237 | Integrator/CP timer modules. */ |
---|
238 | |
---|
239 | typedef struct { |
---|
240 | /* Include a pseudo-PIC device to merge the two interrupt sources. */ |
---|
241 | arm_pic_handler handler; |
---|
242 | void *timer[2]; |
---|
243 | int level[2]; |
---|
244 | uint32_t base; |
---|
245 | /* The output PIC device. */ |
---|
246 | void *pic; |
---|
247 | int irq; |
---|
248 | } sp804_state; |
---|
249 | |
---|
250 | static void sp804_set_irq(void *opaque, int irq, int level) |
---|
251 | { |
---|
252 | sp804_state *s = (sp804_state *)opaque; |
---|
253 | |
---|
254 | s->level[irq] = level; |
---|
255 | pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]); |
---|
256 | } |
---|
257 | |
---|
258 | static uint32_t sp804_read(void *opaque, target_phys_addr_t offset) |
---|
259 | { |
---|
260 | sp804_state *s = (sp804_state *)opaque; |
---|
261 | |
---|
262 | /* ??? Don't know the PrimeCell ID for this device. */ |
---|
263 | offset -= s->base; |
---|
264 | if (offset < 0x20) { |
---|
265 | return arm_timer_read(s->timer[0], offset); |
---|
266 | } else { |
---|
267 | return arm_timer_read(s->timer[1], offset - 0x20); |
---|
268 | } |
---|
269 | } |
---|
270 | |
---|
271 | static void sp804_write(void *opaque, target_phys_addr_t offset, |
---|
272 | uint32_t value) |
---|
273 | { |
---|
274 | sp804_state *s = (sp804_state *)opaque; |
---|
275 | |
---|
276 | offset -= s->base; |
---|
277 | if (offset < 0x20) { |
---|
278 | arm_timer_write(s->timer[0], offset, value); |
---|
279 | } else { |
---|
280 | arm_timer_write(s->timer[1], offset - 0x20, value); |
---|
281 | } |
---|
282 | } |
---|
283 | |
---|
284 | static CPUReadMemoryFunc *sp804_readfn[] = { |
---|
285 | sp804_read, |
---|
286 | sp804_read, |
---|
287 | sp804_read |
---|
288 | }; |
---|
289 | |
---|
290 | static CPUWriteMemoryFunc *sp804_writefn[] = { |
---|
291 | sp804_write, |
---|
292 | sp804_write, |
---|
293 | sp804_write |
---|
294 | }; |
---|
295 | |
---|
296 | void sp804_init(uint32_t base, void *pic, int irq) |
---|
297 | { |
---|
298 | int iomemtype; |
---|
299 | sp804_state *s; |
---|
300 | |
---|
301 | s = (sp804_state *)qemu_mallocz(sizeof(sp804_state)); |
---|
302 | s->handler = sp804_set_irq; |
---|
303 | s->base = base; |
---|
304 | s->pic = pic; |
---|
305 | s->irq = irq; |
---|
306 | /* ??? The timers are actually configurable between 32kHz and 1MHz, but |
---|
307 | we don't implement that. */ |
---|
308 | s->timer[0] = arm_timer_init(1000000, s, 0); |
---|
309 | s->timer[1] = arm_timer_init(1000000, s, 1); |
---|
310 | iomemtype = cpu_register_io_memory(0, sp804_readfn, |
---|
311 | sp804_writefn, s); |
---|
312 | cpu_register_physical_memory(base, 0x00000fff, iomemtype); |
---|
313 | /* ??? Save/restore. */ |
---|
314 | } |
---|
315 | |
---|
316 | |
---|
317 | /* Integrator/CP timer module. */ |
---|
318 | |
---|
319 | typedef struct { |
---|
320 | void *timer[3]; |
---|
321 | uint32_t base; |
---|
322 | } icp_pit_state; |
---|
323 | |
---|
324 | static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset) |
---|
325 | { |
---|
326 | icp_pit_state *s = (icp_pit_state *)opaque; |
---|
327 | int n; |
---|
328 | |
---|
329 | /* ??? Don't know the PrimeCell ID for this device. */ |
---|
330 | offset -= s->base; |
---|
331 | n = offset >> 8; |
---|
332 | if (n > 3) |
---|
333 | cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n); |
---|
334 | |
---|
335 | return arm_timer_read(s->timer[n], offset & 0xff); |
---|
336 | } |
---|
337 | |
---|
338 | static void icp_pit_write(void *opaque, target_phys_addr_t offset, |
---|
339 | uint32_t value) |
---|
340 | { |
---|
341 | icp_pit_state *s = (icp_pit_state *)opaque; |
---|
342 | int n; |
---|
343 | |
---|
344 | offset -= s->base; |
---|
345 | n = offset >> 8; |
---|
346 | if (n > 3) |
---|
347 | cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n); |
---|
348 | |
---|
349 | arm_timer_write(s->timer[n], offset & 0xff, value); |
---|
350 | } |
---|
351 | |
---|
352 | |
---|
353 | static CPUReadMemoryFunc *icp_pit_readfn[] = { |
---|
354 | icp_pit_read, |
---|
355 | icp_pit_read, |
---|
356 | icp_pit_read |
---|
357 | }; |
---|
358 | |
---|
359 | static CPUWriteMemoryFunc *icp_pit_writefn[] = { |
---|
360 | icp_pit_write, |
---|
361 | icp_pit_write, |
---|
362 | icp_pit_write |
---|
363 | }; |
---|
364 | |
---|
365 | void icp_pit_init(uint32_t base, void *pic, int irq) |
---|
366 | { |
---|
367 | int iomemtype; |
---|
368 | icp_pit_state *s; |
---|
369 | |
---|
370 | s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); |
---|
371 | s->base = base; |
---|
372 | /* Timer 0 runs at the system clock speed (40MHz). */ |
---|
373 | s->timer[0] = arm_timer_init(40000000, pic, irq); |
---|
374 | /* The other two timers run at 1MHz. */ |
---|
375 | s->timer[1] = arm_timer_init(1000000, pic, irq + 1); |
---|
376 | s->timer[2] = arm_timer_init(1000000, pic, irq + 2); |
---|
377 | |
---|
378 | iomemtype = cpu_register_io_memory(0, icp_pit_readfn, |
---|
379 | icp_pit_writefn, s); |
---|
380 | cpu_register_physical_memory(base, 0x00000fff, iomemtype); |
---|
381 | /* ??? Save/restore. */ |
---|
382 | } |
---|
383 | |
---|