source: trunk/packages/xen-3.1/xen-3.1/tools/ioemu/hw/arm_timer.c @ 34

Last change on this file since 34 was 34, checked in by hartmans, 18 years ago

Add xen and xen-common

File size: 10.2 KB
Line 
1/*
2 * ARM PrimeCell Timer modules.
3 *
4 * Copyright (c) 2005-2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the GPL.
8 */
9
10#include "vl.h"
11#include "arm_pic.h"
12
13/* Common timer implementation.  */
14
15#define TIMER_CTRL_ONESHOT      (1 << 0)
16#define TIMER_CTRL_32BIT        (1 << 1)
17#define TIMER_CTRL_DIV1         (0 << 2)
18#define TIMER_CTRL_DIV16        (1 << 2)
19#define TIMER_CTRL_DIV256       (2 << 2)
20#define TIMER_CTRL_IE           (1 << 5)
21#define TIMER_CTRL_PERIODIC     (1 << 6)
22#define TIMER_CTRL_ENABLE       (1 << 7)
23
24typedef struct {
25    int64_t next_time;
26    int64_t expires;
27    int64_t loaded;
28    QEMUTimer *timer;
29    uint32_t control;
30    uint32_t count;
31    uint32_t limit;
32    int raw_freq;
33    int freq;
34    int int_level;
35    void *pic;
36    int irq;
37} arm_timer_state;
38
39/* Calculate the new expiry time of the given timer.  */
40
41static void arm_timer_reload(arm_timer_state *s)
42{
43    int64_t delay;
44
45    s->loaded = s->expires;
46    delay = muldiv64(s->count, ticks_per_sec, s->freq);
47    if (delay == 0)
48        delay = 1;
49    s->expires += delay;
50}
51
52/* Check all active timers, and schedule the next timer interrupt.  */
53
54static void arm_timer_update(arm_timer_state *s, int64_t now)
55{
56    int64_t next;
57
58    /* Ignore disabled timers.  */
59    if ((s->control & TIMER_CTRL_ENABLE) == 0)
60        return;
61    /* Ignore expired one-shot timers.  */
62    if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
63        return;
64    if (s->expires - now <= 0) {
65        /* Timer has expired.  */
66        s->int_level = 1;
67        if (s->control & TIMER_CTRL_ONESHOT) {
68            /* One-shot.  */
69            s->count = 0;
70        } else {
71            if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
72                /* Free running.  */
73                if (s->control & TIMER_CTRL_32BIT)
74                    s->count = 0xffffffff;
75                else
76                    s->count = 0xffff;
77            } else {
78                  /* Periodic.  */
79                  s->count = s->limit;
80            }
81        }
82    }
83    while (s->expires - now <= 0) {
84        arm_timer_reload(s);
85    }
86    /* Update interrupts.  */
87    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
88        pic_set_irq_new(s->pic, s->irq, 1);
89    } else {
90        pic_set_irq_new(s->pic, s->irq, 0);
91    }
92
93    next = now;
94    if (next - s->expires < 0)
95        next = s->expires;
96
97    /* Schedule the next timer interrupt.  */
98    if (next == now) {
99        qemu_del_timer(s->timer);
100        s->next_time = 0;
101    } else if (next != s->next_time) {
102        qemu_mod_timer(s->timer, next);
103        s->next_time = next;
104    }
105}
106
107/* Return the current value of the timer.  */
108static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
109{
110    int64_t elapsed;
111    int64_t period;
112
113    if (s->count == 0)
114        return 0;
115    if ((s->control & TIMER_CTRL_ENABLE) == 0)
116        return s->count;
117    elapsed = now - s->loaded;
118    period = s->expires - s->loaded;
119    /* If the timer should have expired then return 0.  This can happen
120       when the host timer signal doesnt occur immediately.  It's better to
121       have a timer appear to sit at zero for a while than have it wrap
122       around before the guest interrupt is raised.  */
123    /* ??? Could we trigger the interrupt here?  */
124    if (elapsed > period)
125        return 0;
126    /* We need to calculate count * elapsed / period without overfowing.
127       Scale both elapsed and period so they fit in a 32-bit int.  */
128    while (period != (int32_t)period) {
129        period >>= 1;
130        elapsed >>= 1;
131    }
132    return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed)
133            / (int32_t)period;
134}
135
136uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
137{
138    arm_timer_state *s = (arm_timer_state *)opaque;
139
140    switch (offset >> 2) {
141    case 0: /* TimerLoad */
142    case 6: /* TimerBGLoad */
143        return s->limit;
144    case 1: /* TimerValue */
145        return arm_timer_getcount(s, qemu_get_clock(vm_clock));
146    case 2: /* TimerControl */
147        return s->control;
148    case 4: /* TimerRIS */
149        return s->int_level;
150    case 5: /* TimerMIS */
151        if ((s->control & TIMER_CTRL_IE) == 0)
152            return 0;
153        return s->int_level;
154    default:
155        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
156        return 0;
157    }
158}
159
160static void arm_timer_write(void *opaque, target_phys_addr_t offset,
161                            uint32_t value)
162{
163    arm_timer_state *s = (arm_timer_state *)opaque;
164    int64_t now;
165
166    now = qemu_get_clock(vm_clock);
167    switch (offset >> 2) {
168    case 0: /* TimerLoad */
169        s->limit = value;
170        s->count = value;
171        s->expires = now;
172        arm_timer_reload(s);
173        break;
174    case 1: /* TimerValue */
175        /* ??? Linux seems to want to write to this readonly register.
176           Ignore it.  */
177        break;
178    case 2: /* TimerControl */
179        if (s->control & TIMER_CTRL_ENABLE) {
180            /* Pause the timer if it is running.  This may cause some
181               inaccuracy dure to rounding, but avoids a whole lot of other
182               messyness.  */
183            s->count = arm_timer_getcount(s, now);
184        }
185        s->control = value;
186        s->freq = s->raw_freq;
187        /* ??? Need to recalculate expiry time after changing divisor.  */
188        switch ((value >> 2) & 3) {
189        case 1: s->freq >>= 4; break;
190        case 2: s->freq >>= 8; break;
191        }
192        if (s->control & TIMER_CTRL_ENABLE) {
193            /* Restart the timer if still enabled.  */
194            s->expires = now;
195            arm_timer_reload(s);
196        }
197        break;
198    case 3: /* TimerIntClr */
199        s->int_level = 0;
200        break;
201    case 6: /* TimerBGLoad */
202        s->limit = value;
203        break;
204    default:
205        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
206    }
207    arm_timer_update(s, now);
208}
209
210static void arm_timer_tick(void *opaque)
211{
212    int64_t now;
213
214    now = qemu_get_clock(vm_clock);
215    arm_timer_update((arm_timer_state *)opaque, now);
216}
217
218static void *arm_timer_init(uint32_t freq, void *pic, int irq)
219{
220    arm_timer_state *s;
221
222    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
223    s->pic = pic;
224    s->irq = irq;
225    s->raw_freq = s->freq = 1000000;
226    s->control = TIMER_CTRL_IE;
227    s->count = 0xffffffff;
228
229    s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
230    /* ??? Save/restore.  */
231    return s;
232}
233
234/* ARM PrimeCell SP804 dual timer module.
235   Docs for this device don't seem to be publicly available.  This
236   implementation is based on gueswork, the linux kernel sources and the
237   Integrator/CP timer modules.  */
238
239typedef struct {
240    /* Include a pseudo-PIC device to merge the two interrupt sources.  */
241    arm_pic_handler handler;
242    void *timer[2];
243    int level[2];
244    uint32_t base;
245    /* The output PIC device.  */
246    void *pic;
247    int irq;
248} sp804_state;
249
250static void sp804_set_irq(void *opaque, int irq, int level)
251{
252    sp804_state *s = (sp804_state *)opaque;
253
254    s->level[irq] = level;
255    pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);
256}
257
258static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
259{
260    sp804_state *s = (sp804_state *)opaque;
261
262    /* ??? Don't know the PrimeCell ID for this device.  */
263    offset -= s->base;
264    if (offset < 0x20) {
265        return arm_timer_read(s->timer[0], offset);
266    } else {
267        return arm_timer_read(s->timer[1], offset - 0x20);
268    }
269}
270
271static void sp804_write(void *opaque, target_phys_addr_t offset,
272                        uint32_t value)
273{
274    sp804_state *s = (sp804_state *)opaque;
275
276    offset -= s->base;
277    if (offset < 0x20) {
278        arm_timer_write(s->timer[0], offset, value);
279    } else {
280        arm_timer_write(s->timer[1], offset - 0x20, value);
281    }
282}
283
284static CPUReadMemoryFunc *sp804_readfn[] = {
285   sp804_read,
286   sp804_read,
287   sp804_read
288};
289
290static CPUWriteMemoryFunc *sp804_writefn[] = {
291   sp804_write,
292   sp804_write,
293   sp804_write
294};
295
296void sp804_init(uint32_t base, void *pic, int irq)
297{
298    int iomemtype;
299    sp804_state *s;
300
301    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
302    s->handler = sp804_set_irq;
303    s->base = base;
304    s->pic = pic;
305    s->irq = irq;
306    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
307       we don't implement that.  */
308    s->timer[0] = arm_timer_init(1000000, s, 0);
309    s->timer[1] = arm_timer_init(1000000, s, 1);
310    iomemtype = cpu_register_io_memory(0, sp804_readfn,
311                                       sp804_writefn, s);
312    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
313    /* ??? Save/restore.  */
314}
315
316
317/* Integrator/CP timer module.  */
318
319typedef struct {
320    void *timer[3];
321    uint32_t base;
322} icp_pit_state;
323
324static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
325{
326    icp_pit_state *s = (icp_pit_state *)opaque;
327    int n;
328
329    /* ??? Don't know the PrimeCell ID for this device.  */
330    offset -= s->base;
331    n = offset >> 8;
332    if (n > 3)
333        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
334
335    return arm_timer_read(s->timer[n], offset & 0xff);
336}
337
338static void icp_pit_write(void *opaque, target_phys_addr_t offset,
339                          uint32_t value)
340{
341    icp_pit_state *s = (icp_pit_state *)opaque;
342    int n;
343
344    offset -= s->base;
345    n = offset >> 8;
346    if (n > 3)
347        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
348
349    arm_timer_write(s->timer[n], offset & 0xff, value);
350}
351
352
353static CPUReadMemoryFunc *icp_pit_readfn[] = {
354   icp_pit_read,
355   icp_pit_read,
356   icp_pit_read
357};
358
359static CPUWriteMemoryFunc *icp_pit_writefn[] = {
360   icp_pit_write,
361   icp_pit_write,
362   icp_pit_write
363};
364
365void icp_pit_init(uint32_t base, void *pic, int irq)
366{
367    int iomemtype;
368    icp_pit_state *s;
369
370    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
371    s->base = base;
372    /* Timer 0 runs at the system clock speed (40MHz).  */
373    s->timer[0] = arm_timer_init(40000000, pic, irq);
374    /* The other two timers run at 1MHz.  */
375    s->timer[1] = arm_timer_init(1000000, pic, irq + 1);
376    s->timer[2] = arm_timer_init(1000000, pic, irq + 2);
377
378    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
379                                       icp_pit_writefn, s);
380    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
381    /* ??? Save/restore.  */
382}
383
Note: See TracBrowser for help on using the repository browser.