1 | #ifndef __ASM_SYSTEM_H |
---|
2 | #define __ASM_SYSTEM_H |
---|
3 | |
---|
4 | #include <linux/kernel.h> |
---|
5 | #include <asm/segment.h> |
---|
6 | #include <asm/cpufeature.h> |
---|
7 | #include <linux/bitops.h> /* for LOCK_PREFIX */ |
---|
8 | #include <asm/synch_bitops.h> |
---|
9 | #include <asm/hypervisor.h> |
---|
10 | |
---|
11 | #ifdef __KERNEL__ |
---|
12 | |
---|
13 | struct task_struct; /* one of the stranger aspects of C forward declarations.. */ |
---|
14 | extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next)); |
---|
15 | |
---|
16 | /* |
---|
17 | * Saving eflags is important. It switches not only IOPL between tasks, |
---|
18 | * it also protects other tasks from NT leaking through sysenter etc. |
---|
19 | */ |
---|
20 | #define switch_to(prev,next,last) do { \ |
---|
21 | unsigned long esi,edi; \ |
---|
22 | asm volatile("pushfl\n\t" /* Save flags */ \ |
---|
23 | "pushl %%ebp\n\t" \ |
---|
24 | "movl %%esp,%0\n\t" /* save ESP */ \ |
---|
25 | "movl %5,%%esp\n\t" /* restore ESP */ \ |
---|
26 | "movl $1f,%1\n\t" /* save EIP */ \ |
---|
27 | "pushl %6\n\t" /* restore EIP */ \ |
---|
28 | "jmp __switch_to\n" \ |
---|
29 | "1:\t" \ |
---|
30 | "popl %%ebp\n\t" \ |
---|
31 | "popfl" \ |
---|
32 | :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \ |
---|
33 | "=a" (last),"=S" (esi),"=D" (edi) \ |
---|
34 | :"m" (next->thread.esp),"m" (next->thread.eip), \ |
---|
35 | "2" (prev), "d" (next)); \ |
---|
36 | } while (0) |
---|
37 | |
---|
38 | #define _set_base(addr,base) do { unsigned long __pr; \ |
---|
39 | __asm__ __volatile__ ("movw %%dx,%1\n\t" \ |
---|
40 | "rorl $16,%%edx\n\t" \ |
---|
41 | "movb %%dl,%2\n\t" \ |
---|
42 | "movb %%dh,%3" \ |
---|
43 | :"=&d" (__pr) \ |
---|
44 | :"m" (*((addr)+2)), \ |
---|
45 | "m" (*((addr)+4)), \ |
---|
46 | "m" (*((addr)+7)), \ |
---|
47 | "0" (base) \ |
---|
48 | ); } while(0) |
---|
49 | |
---|
50 | #define _set_limit(addr,limit) do { unsigned long __lr; \ |
---|
51 | __asm__ __volatile__ ("movw %%dx,%1\n\t" \ |
---|
52 | "rorl $16,%%edx\n\t" \ |
---|
53 | "movb %2,%%dh\n\t" \ |
---|
54 | "andb $0xf0,%%dh\n\t" \ |
---|
55 | "orb %%dh,%%dl\n\t" \ |
---|
56 | "movb %%dl,%2" \ |
---|
57 | :"=&d" (__lr) \ |
---|
58 | :"m" (*(addr)), \ |
---|
59 | "m" (*((addr)+6)), \ |
---|
60 | "0" (limit) \ |
---|
61 | ); } while(0) |
---|
62 | |
---|
63 | #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) ) |
---|
64 | #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) ) |
---|
65 | |
---|
66 | /* |
---|
67 | * Load a segment. Fall back on loading the zero |
---|
68 | * segment if something goes wrong.. |
---|
69 | */ |
---|
70 | #define loadsegment(seg,value) \ |
---|
71 | asm volatile("\n" \ |
---|
72 | "1:\t" \ |
---|
73 | "mov %0,%%" #seg "\n" \ |
---|
74 | "2:\n" \ |
---|
75 | ".section .fixup,\"ax\"\n" \ |
---|
76 | "3:\t" \ |
---|
77 | "pushl $0\n\t" \ |
---|
78 | "popl %%" #seg "\n\t" \ |
---|
79 | "jmp 2b\n" \ |
---|
80 | ".previous\n" \ |
---|
81 | ".section __ex_table,\"a\"\n\t" \ |
---|
82 | ".align 4\n\t" \ |
---|
83 | ".long 1b,3b\n" \ |
---|
84 | ".previous" \ |
---|
85 | : :"rm" (value)) |
---|
86 | |
---|
87 | /* |
---|
88 | * Save a segment register away |
---|
89 | */ |
---|
90 | #define savesegment(seg, value) \ |
---|
91 | asm volatile("mov %%" #seg ",%0":"=rm" (value)) |
---|
92 | |
---|
93 | #define read_cr0() ({ \ |
---|
94 | unsigned int __dummy; \ |
---|
95 | __asm__ __volatile__( \ |
---|
96 | "movl %%cr0,%0\n\t" \ |
---|
97 | :"=r" (__dummy)); \ |
---|
98 | __dummy; \ |
---|
99 | }) |
---|
100 | #define write_cr0(x) \ |
---|
101 | __asm__ __volatile__("movl %0,%%cr0": :"r" (x)) |
---|
102 | |
---|
103 | #define read_cr2() (current_vcpu_info()->arch.cr2) |
---|
104 | #define write_cr2(x) \ |
---|
105 | __asm__ __volatile__("movl %0,%%cr2": :"r" (x)) |
---|
106 | |
---|
107 | #define read_cr3() ({ \ |
---|
108 | unsigned int __dummy; \ |
---|
109 | __asm__ ( \ |
---|
110 | "movl %%cr3,%0\n\t" \ |
---|
111 | :"=r" (__dummy)); \ |
---|
112 | __dummy = xen_cr3_to_pfn(__dummy); \ |
---|
113 | mfn_to_pfn(__dummy) << PAGE_SHIFT; \ |
---|
114 | }) |
---|
115 | #define write_cr3(x) ({ \ |
---|
116 | unsigned int __dummy = pfn_to_mfn((x) >> PAGE_SHIFT); \ |
---|
117 | __dummy = xen_pfn_to_cr3(__dummy); \ |
---|
118 | __asm__ __volatile__("movl %0,%%cr3": :"r" (__dummy)); \ |
---|
119 | }) |
---|
120 | #define read_cr4() ({ \ |
---|
121 | unsigned int __dummy; \ |
---|
122 | __asm__( \ |
---|
123 | "movl %%cr4,%0\n\t" \ |
---|
124 | :"=r" (__dummy)); \ |
---|
125 | __dummy; \ |
---|
126 | }) |
---|
127 | #define read_cr4_safe() ({ \ |
---|
128 | unsigned int __dummy; \ |
---|
129 | /* This could fault if %cr4 does not exist */ \ |
---|
130 | __asm__("1: movl %%cr4, %0 \n" \ |
---|
131 | "2: \n" \ |
---|
132 | ".section __ex_table,\"a\" \n" \ |
---|
133 | ".long 1b,2b \n" \ |
---|
134 | ".previous \n" \ |
---|
135 | : "=r" (__dummy): "0" (0)); \ |
---|
136 | __dummy; \ |
---|
137 | }) |
---|
138 | |
---|
139 | #define write_cr4(x) \ |
---|
140 | __asm__ __volatile__("movl %0,%%cr4": :"r" (x)) |
---|
141 | |
---|
142 | /* |
---|
143 | * Clear and set 'TS' bit respectively |
---|
144 | */ |
---|
145 | #define clts() (HYPERVISOR_fpu_taskswitch(0)) |
---|
146 | #define stts() (HYPERVISOR_fpu_taskswitch(1)) |
---|
147 | |
---|
148 | #endif /* __KERNEL__ */ |
---|
149 | |
---|
150 | #define wbinvd() \ |
---|
151 | __asm__ __volatile__ ("wbinvd": : :"memory") |
---|
152 | |
---|
153 | static inline unsigned long get_limit(unsigned long segment) |
---|
154 | { |
---|
155 | unsigned long __limit; |
---|
156 | __asm__("lsll %1,%0" |
---|
157 | :"=r" (__limit):"r" (segment)); |
---|
158 | return __limit+1; |
---|
159 | } |
---|
160 | |
---|
161 | #define nop() __asm__ __volatile__ ("nop") |
---|
162 | |
---|
163 | #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr)))) |
---|
164 | |
---|
165 | #define tas(ptr) (xchg((ptr),1)) |
---|
166 | |
---|
167 | struct __xchg_dummy { unsigned long a[100]; }; |
---|
168 | #define __xg(x) ((struct __xchg_dummy *)(x)) |
---|
169 | |
---|
170 | |
---|
171 | #ifdef CONFIG_X86_CMPXCHG64 |
---|
172 | |
---|
173 | /* |
---|
174 | * The semantics of XCHGCMP8B are a bit strange, this is why |
---|
175 | * there is a loop and the loading of %%eax and %%edx has to |
---|
176 | * be inside. This inlines well in most cases, the cached |
---|
177 | * cost is around ~38 cycles. (in the future we might want |
---|
178 | * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that |
---|
179 | * might have an implicit FPU-save as a cost, so it's not |
---|
180 | * clear which path to go.) |
---|
181 | * |
---|
182 | * cmpxchg8b must be used with the lock prefix here to allow |
---|
183 | * the instruction to be executed atomically, see page 3-102 |
---|
184 | * of the instruction set reference 24319102.pdf. We need |
---|
185 | * the reader side to see the coherent 64bit value. |
---|
186 | */ |
---|
187 | static inline void __set_64bit (unsigned long long * ptr, |
---|
188 | unsigned int low, unsigned int high) |
---|
189 | { |
---|
190 | __asm__ __volatile__ ( |
---|
191 | "\n1:\t" |
---|
192 | "movl (%0), %%eax\n\t" |
---|
193 | "movl 4(%0), %%edx\n\t" |
---|
194 | "lock cmpxchg8b (%0)\n\t" |
---|
195 | "jnz 1b" |
---|
196 | : /* no outputs */ |
---|
197 | : "D"(ptr), |
---|
198 | "b"(low), |
---|
199 | "c"(high) |
---|
200 | : "ax","dx","memory"); |
---|
201 | } |
---|
202 | |
---|
203 | static inline void __set_64bit_constant (unsigned long long *ptr, |
---|
204 | unsigned long long value) |
---|
205 | { |
---|
206 | __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL)); |
---|
207 | } |
---|
208 | #define ll_low(x) *(((unsigned int*)&(x))+0) |
---|
209 | #define ll_high(x) *(((unsigned int*)&(x))+1) |
---|
210 | |
---|
211 | static inline void __set_64bit_var (unsigned long long *ptr, |
---|
212 | unsigned long long value) |
---|
213 | { |
---|
214 | __set_64bit(ptr,ll_low(value), ll_high(value)); |
---|
215 | } |
---|
216 | |
---|
217 | #define set_64bit(ptr,value) \ |
---|
218 | (__builtin_constant_p(value) ? \ |
---|
219 | __set_64bit_constant(ptr, value) : \ |
---|
220 | __set_64bit_var(ptr, value) ) |
---|
221 | |
---|
222 | #define _set_64bit(ptr,value) \ |
---|
223 | (__builtin_constant_p(value) ? \ |
---|
224 | __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \ |
---|
225 | __set_64bit(ptr, ll_low(value), ll_high(value)) ) |
---|
226 | |
---|
227 | #endif |
---|
228 | |
---|
229 | /* |
---|
230 | * Note: no "lock" prefix even on SMP: xchg always implies lock anyway |
---|
231 | * Note 2: xchg has side effect, so that attribute volatile is necessary, |
---|
232 | * but generally the primitive is invalid, *ptr is output argument. --ANK |
---|
233 | */ |
---|
234 | static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) |
---|
235 | { |
---|
236 | switch (size) { |
---|
237 | case 1: |
---|
238 | __asm__ __volatile__("xchgb %b0,%1" |
---|
239 | :"=q" (x) |
---|
240 | :"m" (*__xg(ptr)), "0" (x) |
---|
241 | :"memory"); |
---|
242 | break; |
---|
243 | case 2: |
---|
244 | __asm__ __volatile__("xchgw %w0,%1" |
---|
245 | :"=r" (x) |
---|
246 | :"m" (*__xg(ptr)), "0" (x) |
---|
247 | :"memory"); |
---|
248 | break; |
---|
249 | case 4: |
---|
250 | __asm__ __volatile__("xchgl %0,%1" |
---|
251 | :"=r" (x) |
---|
252 | :"m" (*__xg(ptr)), "0" (x) |
---|
253 | :"memory"); |
---|
254 | break; |
---|
255 | } |
---|
256 | return x; |
---|
257 | } |
---|
258 | |
---|
259 | /* |
---|
260 | * Atomic compare and exchange. Compare OLD with MEM, if identical, |
---|
261 | * store NEW in MEM. Return the initial value in MEM. Success is |
---|
262 | * indicated by comparing RETURN with OLD. |
---|
263 | */ |
---|
264 | |
---|
265 | #ifdef CONFIG_X86_CMPXCHG |
---|
266 | #define __HAVE_ARCH_CMPXCHG 1 |
---|
267 | #define cmpxchg(ptr,o,n)\ |
---|
268 | ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\ |
---|
269 | (unsigned long)(n),sizeof(*(ptr)))) |
---|
270 | #endif |
---|
271 | |
---|
272 | static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old, |
---|
273 | unsigned long new, int size) |
---|
274 | { |
---|
275 | unsigned long prev; |
---|
276 | switch (size) { |
---|
277 | case 1: |
---|
278 | __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2" |
---|
279 | : "=a"(prev) |
---|
280 | : "q"(new), "m"(*__xg(ptr)), "0"(old) |
---|
281 | : "memory"); |
---|
282 | return prev; |
---|
283 | case 2: |
---|
284 | __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2" |
---|
285 | : "=a"(prev) |
---|
286 | : "r"(new), "m"(*__xg(ptr)), "0"(old) |
---|
287 | : "memory"); |
---|
288 | return prev; |
---|
289 | case 4: |
---|
290 | __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2" |
---|
291 | : "=a"(prev) |
---|
292 | : "r"(new), "m"(*__xg(ptr)), "0"(old) |
---|
293 | : "memory"); |
---|
294 | return prev; |
---|
295 | } |
---|
296 | return old; |
---|
297 | } |
---|
298 | |
---|
299 | #ifndef CONFIG_X86_CMPXCHG |
---|
300 | /* |
---|
301 | * Building a kernel capable running on 80386. It may be necessary to |
---|
302 | * simulate the cmpxchg on the 80386 CPU. For that purpose we define |
---|
303 | * a function for each of the sizes we support. |
---|
304 | */ |
---|
305 | |
---|
306 | extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8); |
---|
307 | extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16); |
---|
308 | extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32); |
---|
309 | |
---|
310 | static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old, |
---|
311 | unsigned long new, int size) |
---|
312 | { |
---|
313 | switch (size) { |
---|
314 | case 1: |
---|
315 | return cmpxchg_386_u8(ptr, old, new); |
---|
316 | case 2: |
---|
317 | return cmpxchg_386_u16(ptr, old, new); |
---|
318 | case 4: |
---|
319 | return cmpxchg_386_u32(ptr, old, new); |
---|
320 | } |
---|
321 | return old; |
---|
322 | } |
---|
323 | |
---|
324 | #define cmpxchg(ptr,o,n) \ |
---|
325 | ({ \ |
---|
326 | __typeof__(*(ptr)) __ret; \ |
---|
327 | if (likely(boot_cpu_data.x86 > 3)) \ |
---|
328 | __ret = __cmpxchg((ptr), (unsigned long)(o), \ |
---|
329 | (unsigned long)(n), sizeof(*(ptr))); \ |
---|
330 | else \ |
---|
331 | __ret = cmpxchg_386((ptr), (unsigned long)(o), \ |
---|
332 | (unsigned long)(n), sizeof(*(ptr))); \ |
---|
333 | __ret; \ |
---|
334 | }) |
---|
335 | #endif |
---|
336 | |
---|
337 | #ifdef CONFIG_X86_CMPXCHG64 |
---|
338 | |
---|
339 | static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old, |
---|
340 | unsigned long long new) |
---|
341 | { |
---|
342 | unsigned long long prev; |
---|
343 | __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3" |
---|
344 | : "=A"(prev) |
---|
345 | : "b"((unsigned long)new), |
---|
346 | "c"((unsigned long)(new >> 32)), |
---|
347 | "m"(*__xg(ptr)), |
---|
348 | "0"(old) |
---|
349 | : "memory"); |
---|
350 | return prev; |
---|
351 | } |
---|
352 | |
---|
353 | #define cmpxchg64(ptr,o,n)\ |
---|
354 | ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\ |
---|
355 | (unsigned long long)(n))) |
---|
356 | |
---|
357 | #endif |
---|
358 | |
---|
359 | /* |
---|
360 | * Force strict CPU ordering. |
---|
361 | * And yes, this is required on UP too when we're talking |
---|
362 | * to devices. |
---|
363 | * |
---|
364 | * For now, "wmb()" doesn't actually do anything, as all |
---|
365 | * Intel CPU's follow what Intel calls a *Processor Order*, |
---|
366 | * in which all writes are seen in the program order even |
---|
367 | * outside the CPU. |
---|
368 | * |
---|
369 | * I expect future Intel CPU's to have a weaker ordering, |
---|
370 | * but I'd also expect them to finally get their act together |
---|
371 | * and add some real memory barriers if so. |
---|
372 | * |
---|
373 | * Some non intel clones support out of order store. wmb() ceases to be a |
---|
374 | * nop for these. |
---|
375 | */ |
---|
376 | |
---|
377 | |
---|
378 | /* |
---|
379 | * Actually only lfence would be needed for mb() because all stores done |
---|
380 | * by the kernel should be already ordered. But keep a full barrier for now. |
---|
381 | */ |
---|
382 | |
---|
383 | #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2) |
---|
384 | #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2) |
---|
385 | |
---|
386 | /** |
---|
387 | * read_barrier_depends - Flush all pending reads that subsequents reads |
---|
388 | * depend on. |
---|
389 | * |
---|
390 | * No data-dependent reads from memory-like regions are ever reordered |
---|
391 | * over this barrier. All reads preceding this primitive are guaranteed |
---|
392 | * to access memory (but not necessarily other CPUs' caches) before any |
---|
393 | * reads following this primitive that depend on the data return by |
---|
394 | * any of the preceding reads. This primitive is much lighter weight than |
---|
395 | * rmb() on most CPUs, and is never heavier weight than is |
---|
396 | * rmb(). |
---|
397 | * |
---|
398 | * These ordering constraints are respected by both the local CPU |
---|
399 | * and the compiler. |
---|
400 | * |
---|
401 | * Ordering is not guaranteed by anything other than these primitives, |
---|
402 | * not even by data dependencies. See the documentation for |
---|
403 | * memory_barrier() for examples and URLs to more information. |
---|
404 | * |
---|
405 | * For example, the following code would force ordering (the initial |
---|
406 | * value of "a" is zero, "b" is one, and "p" is "&a"): |
---|
407 | * |
---|
408 | * <programlisting> |
---|
409 | * CPU 0 CPU 1 |
---|
410 | * |
---|
411 | * b = 2; |
---|
412 | * memory_barrier(); |
---|
413 | * p = &b; q = p; |
---|
414 | * read_barrier_depends(); |
---|
415 | * d = *q; |
---|
416 | * </programlisting> |
---|
417 | * |
---|
418 | * because the read of "*q" depends on the read of "p" and these |
---|
419 | * two reads are separated by a read_barrier_depends(). However, |
---|
420 | * the following code, with the same initial values for "a" and "b": |
---|
421 | * |
---|
422 | * <programlisting> |
---|
423 | * CPU 0 CPU 1 |
---|
424 | * |
---|
425 | * a = 2; |
---|
426 | * memory_barrier(); |
---|
427 | * b = 3; y = b; |
---|
428 | * read_barrier_depends(); |
---|
429 | * x = a; |
---|
430 | * </programlisting> |
---|
431 | * |
---|
432 | * does not enforce ordering, since there is no data dependency between |
---|
433 | * the read of "a" and the read of "b". Therefore, on some CPUs, such |
---|
434 | * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb() |
---|
435 | * in cases like this where there are no data dependencies. |
---|
436 | **/ |
---|
437 | |
---|
438 | #define read_barrier_depends() do { } while(0) |
---|
439 | |
---|
440 | #ifdef CONFIG_X86_OOSTORE |
---|
441 | /* Actually there are no OOO store capable CPUs for now that do SSE, |
---|
442 | but make it already an possibility. */ |
---|
443 | #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM) |
---|
444 | #else |
---|
445 | #define wmb() __asm__ __volatile__ ("": : :"memory") |
---|
446 | #endif |
---|
447 | |
---|
448 | #ifdef CONFIG_SMP |
---|
449 | #define smp_mb() mb() |
---|
450 | #define smp_rmb() rmb() |
---|
451 | #define smp_wmb() wmb() |
---|
452 | #define smp_read_barrier_depends() read_barrier_depends() |
---|
453 | #define set_mb(var, value) do { (void) xchg(&var, value); } while (0) |
---|
454 | #else |
---|
455 | #define smp_mb() barrier() |
---|
456 | #define smp_rmb() barrier() |
---|
457 | #define smp_wmb() barrier() |
---|
458 | #define smp_read_barrier_depends() do { } while(0) |
---|
459 | #define set_mb(var, value) do { var = value; barrier(); } while (0) |
---|
460 | #endif |
---|
461 | |
---|
462 | #include <linux/irqflags.h> |
---|
463 | |
---|
464 | /* |
---|
465 | * disable hlt during certain critical i/o operations |
---|
466 | */ |
---|
467 | #define HAVE_DISABLE_HLT |
---|
468 | void disable_hlt(void); |
---|
469 | void enable_hlt(void); |
---|
470 | |
---|
471 | extern int es7000_plat; |
---|
472 | void cpu_idle_wait(void); |
---|
473 | |
---|
474 | /* |
---|
475 | * On SMP systems, when the scheduler does migration-cost autodetection, |
---|
476 | * it needs a way to flush as much of the CPU's caches as possible: |
---|
477 | */ |
---|
478 | static inline void sched_cacheflush(void) |
---|
479 | { |
---|
480 | wbinvd(); |
---|
481 | } |
---|
482 | |
---|
483 | extern unsigned long arch_align_stack(unsigned long sp); |
---|
484 | extern void free_init_pages(char *what, unsigned long begin, unsigned long end); |
---|
485 | |
---|
486 | void default_idle(void); |
---|
487 | |
---|
488 | #endif |
---|