source: trunk/packages/xen-3.1/xen-3.1/linux-2.6-xen-sparse/include/asm-i386/mach-xen/asm/system.h @ 34

Last change on this file since 34 was 34, checked in by hartmans, 18 years ago

Add xen and xen-common

File size: 13.2 KB
Line 
1#ifndef __ASM_SYSTEM_H
2#define __ASM_SYSTEM_H
3
4#include <linux/kernel.h>
5#include <asm/segment.h>
6#include <asm/cpufeature.h>
7#include <linux/bitops.h> /* for LOCK_PREFIX */
8#include <asm/synch_bitops.h>
9#include <asm/hypervisor.h>
10
11#ifdef __KERNEL__
12
13struct task_struct;     /* one of the stranger aspects of C forward declarations.. */
14extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
15
16/*
17 * Saving eflags is important. It switches not only IOPL between tasks,
18 * it also protects other tasks from NT leaking through sysenter etc.
19 */
20#define switch_to(prev,next,last) do {                                  \
21        unsigned long esi,edi;                                          \
22        asm volatile("pushfl\n\t"               /* Save flags */        \
23                     "pushl %%ebp\n\t"                                  \
24                     "movl %%esp,%0\n\t"        /* save ESP */          \
25                     "movl %5,%%esp\n\t"        /* restore ESP */       \
26                     "movl $1f,%1\n\t"          /* save EIP */          \
27                     "pushl %6\n\t"             /* restore EIP */       \
28                     "jmp __switch_to\n"                                \
29                     "1:\t"                                             \
30                     "popl %%ebp\n\t"                                   \
31                     "popfl"                                            \
32                     :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
33                      "=a" (last),"=S" (esi),"=D" (edi)                 \
34                     :"m" (next->thread.esp),"m" (next->thread.eip),    \
35                      "2" (prev), "d" (next));                          \
36} while (0)
37
38#define _set_base(addr,base) do { unsigned long __pr; \
39__asm__ __volatile__ ("movw %%dx,%1\n\t" \
40        "rorl $16,%%edx\n\t" \
41        "movb %%dl,%2\n\t" \
42        "movb %%dh,%3" \
43        :"=&d" (__pr) \
44        :"m" (*((addr)+2)), \
45         "m" (*((addr)+4)), \
46         "m" (*((addr)+7)), \
47         "0" (base) \
48        ); } while(0)
49
50#define _set_limit(addr,limit) do { unsigned long __lr; \
51__asm__ __volatile__ ("movw %%dx,%1\n\t" \
52        "rorl $16,%%edx\n\t" \
53        "movb %2,%%dh\n\t" \
54        "andb $0xf0,%%dh\n\t" \
55        "orb %%dh,%%dl\n\t" \
56        "movb %%dl,%2" \
57        :"=&d" (__lr) \
58        :"m" (*(addr)), \
59         "m" (*((addr)+6)), \
60         "0" (limit) \
61        ); } while(0)
62
63#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
64#define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
65
66/*
67 * Load a segment. Fall back on loading the zero
68 * segment if something goes wrong..
69 */
70#define loadsegment(seg,value)                  \
71        asm volatile("\n"                       \
72                "1:\t"                          \
73                "mov %0,%%" #seg "\n"           \
74                "2:\n"                          \
75                ".section .fixup,\"ax\"\n"      \
76                "3:\t"                          \
77                "pushl $0\n\t"                  \
78                "popl %%" #seg "\n\t"           \
79                "jmp 2b\n"                      \
80                ".previous\n"                   \
81                ".section __ex_table,\"a\"\n\t" \
82                ".align 4\n\t"                  \
83                ".long 1b,3b\n"                 \
84                ".previous"                     \
85                : :"rm" (value))
86
87/*
88 * Save a segment register away
89 */
90#define savesegment(seg, value) \
91        asm volatile("mov %%" #seg ",%0":"=rm" (value))
92
93#define read_cr0() ({ \
94        unsigned int __dummy; \
95        __asm__ __volatile__( \
96                "movl %%cr0,%0\n\t" \
97                :"=r" (__dummy)); \
98        __dummy; \
99})
100#define write_cr0(x) \
101        __asm__ __volatile__("movl %0,%%cr0": :"r" (x))
102
103#define read_cr2() (current_vcpu_info()->arch.cr2)
104#define write_cr2(x) \
105        __asm__ __volatile__("movl %0,%%cr2": :"r" (x))
106
107#define read_cr3() ({ \
108        unsigned int __dummy; \
109        __asm__ ( \
110                "movl %%cr3,%0\n\t" \
111                :"=r" (__dummy)); \
112        __dummy = xen_cr3_to_pfn(__dummy); \
113        mfn_to_pfn(__dummy) << PAGE_SHIFT; \
114})
115#define write_cr3(x) ({                                         \
116        unsigned int __dummy = pfn_to_mfn((x) >> PAGE_SHIFT);   \
117        __dummy = xen_pfn_to_cr3(__dummy);                      \
118        __asm__ __volatile__("movl %0,%%cr3": :"r" (__dummy));  \
119})
120#define read_cr4() ({ \
121        unsigned int __dummy; \
122        __asm__( \
123                "movl %%cr4,%0\n\t" \
124                :"=r" (__dummy)); \
125        __dummy; \
126})
127#define read_cr4_safe() ({                            \
128        unsigned int __dummy;                         \
129        /* This could fault if %cr4 does not exist */ \
130        __asm__("1: movl %%cr4, %0              \n"   \
131                "2:                             \n"   \
132                ".section __ex_table,\"a\"      \n"   \
133                ".long 1b,2b                    \n"   \
134                ".previous                      \n"   \
135                : "=r" (__dummy): "0" (0));           \
136        __dummy;                                      \
137})
138
139#define write_cr4(x) \
140        __asm__ __volatile__("movl %0,%%cr4": :"r" (x))
141
142/*
143 * Clear and set 'TS' bit respectively
144 */
145#define clts() (HYPERVISOR_fpu_taskswitch(0))
146#define stts() (HYPERVISOR_fpu_taskswitch(1))
147
148#endif  /* __KERNEL__ */
149
150#define wbinvd() \
151        __asm__ __volatile__ ("wbinvd": : :"memory")
152
153static inline unsigned long get_limit(unsigned long segment)
154{
155        unsigned long __limit;
156        __asm__("lsll %1,%0"
157                :"=r" (__limit):"r" (segment));
158        return __limit+1;
159}
160
161#define nop() __asm__ __volatile__ ("nop")
162
163#define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
164
165#define tas(ptr) (xchg((ptr),1))
166
167struct __xchg_dummy { unsigned long a[100]; };
168#define __xg(x) ((struct __xchg_dummy *)(x))
169
170
171#ifdef CONFIG_X86_CMPXCHG64
172
173/*
174 * The semantics of XCHGCMP8B are a bit strange, this is why
175 * there is a loop and the loading of %%eax and %%edx has to
176 * be inside. This inlines well in most cases, the cached
177 * cost is around ~38 cycles. (in the future we might want
178 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
179 * might have an implicit FPU-save as a cost, so it's not
180 * clear which path to go.)
181 *
182 * cmpxchg8b must be used with the lock prefix here to allow
183 * the instruction to be executed atomically, see page 3-102
184 * of the instruction set reference 24319102.pdf. We need
185 * the reader side to see the coherent 64bit value.
186 */
187static inline void __set_64bit (unsigned long long * ptr,
188                unsigned int low, unsigned int high)
189{
190        __asm__ __volatile__ (
191                "\n1:\t"
192                "movl (%0), %%eax\n\t"
193                "movl 4(%0), %%edx\n\t"
194                "lock cmpxchg8b (%0)\n\t"
195                "jnz 1b"
196                : /* no outputs */
197                :       "D"(ptr),
198                        "b"(low),
199                        "c"(high)
200                :       "ax","dx","memory");
201}
202
203static inline void __set_64bit_constant (unsigned long long *ptr,
204                                                 unsigned long long value)
205{
206        __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
207}
208#define ll_low(x)       *(((unsigned int*)&(x))+0)
209#define ll_high(x)      *(((unsigned int*)&(x))+1)
210
211static inline void __set_64bit_var (unsigned long long *ptr,
212                         unsigned long long value)
213{
214        __set_64bit(ptr,ll_low(value), ll_high(value));
215}
216
217#define set_64bit(ptr,value) \
218(__builtin_constant_p(value) ? \
219 __set_64bit_constant(ptr, value) : \
220 __set_64bit_var(ptr, value) )
221
222#define _set_64bit(ptr,value) \
223(__builtin_constant_p(value) ? \
224 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
225 __set_64bit(ptr, ll_low(value), ll_high(value)) )
226
227#endif
228
229/*
230 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
231 * Note 2: xchg has side effect, so that attribute volatile is necessary,
232 *        but generally the primitive is invalid, *ptr is output argument. --ANK
233 */
234static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
235{
236        switch (size) {
237                case 1:
238                        __asm__ __volatile__("xchgb %b0,%1"
239                                :"=q" (x)
240                                :"m" (*__xg(ptr)), "0" (x)
241                                :"memory");
242                        break;
243                case 2:
244                        __asm__ __volatile__("xchgw %w0,%1"
245                                :"=r" (x)
246                                :"m" (*__xg(ptr)), "0" (x)
247                                :"memory");
248                        break;
249                case 4:
250                        __asm__ __volatile__("xchgl %0,%1"
251                                :"=r" (x)
252                                :"m" (*__xg(ptr)), "0" (x)
253                                :"memory");
254                        break;
255        }
256        return x;
257}
258
259/*
260 * Atomic compare and exchange.  Compare OLD with MEM, if identical,
261 * store NEW in MEM.  Return the initial value in MEM.  Success is
262 * indicated by comparing RETURN with OLD.
263 */
264
265#ifdef CONFIG_X86_CMPXCHG
266#define __HAVE_ARCH_CMPXCHG 1
267#define cmpxchg(ptr,o,n)\
268        ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
269                                        (unsigned long)(n),sizeof(*(ptr))))
270#endif
271
272static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
273                                      unsigned long new, int size)
274{
275        unsigned long prev;
276        switch (size) {
277        case 1:
278                __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
279                                     : "=a"(prev)
280                                     : "q"(new), "m"(*__xg(ptr)), "0"(old)
281                                     : "memory");
282                return prev;
283        case 2:
284                __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
285                                     : "=a"(prev)
286                                     : "r"(new), "m"(*__xg(ptr)), "0"(old)
287                                     : "memory");
288                return prev;
289        case 4:
290                __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
291                                     : "=a"(prev)
292                                     : "r"(new), "m"(*__xg(ptr)), "0"(old)
293                                     : "memory");
294                return prev;
295        }
296        return old;
297}
298
299#ifndef CONFIG_X86_CMPXCHG
300/*
301 * Building a kernel capable running on 80386. It may be necessary to
302 * simulate the cmpxchg on the 80386 CPU. For that purpose we define
303 * a function for each of the sizes we support.
304 */
305
306extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
307extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
308extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
309
310static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
311                                      unsigned long new, int size)
312{
313        switch (size) {
314        case 1:
315                return cmpxchg_386_u8(ptr, old, new);
316        case 2:
317                return cmpxchg_386_u16(ptr, old, new);
318        case 4:
319                return cmpxchg_386_u32(ptr, old, new);
320        }
321        return old;
322}
323
324#define cmpxchg(ptr,o,n)                                                \
325({                                                                      \
326        __typeof__(*(ptr)) __ret;                                       \
327        if (likely(boot_cpu_data.x86 > 3))                              \
328                __ret = __cmpxchg((ptr), (unsigned long)(o),            \
329                                        (unsigned long)(n), sizeof(*(ptr))); \
330        else                                                            \
331                __ret = cmpxchg_386((ptr), (unsigned long)(o),          \
332                                        (unsigned long)(n), sizeof(*(ptr))); \
333        __ret;                                                          \
334})
335#endif
336
337#ifdef CONFIG_X86_CMPXCHG64
338
339static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
340                                      unsigned long long new)
341{
342        unsigned long long prev;
343        __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
344                             : "=A"(prev)
345                             : "b"((unsigned long)new),
346                               "c"((unsigned long)(new >> 32)),
347                               "m"(*__xg(ptr)),
348                               "0"(old)
349                             : "memory");
350        return prev;
351}
352
353#define cmpxchg64(ptr,o,n)\
354        ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
355                                        (unsigned long long)(n)))
356
357#endif
358   
359/*
360 * Force strict CPU ordering.
361 * And yes, this is required on UP too when we're talking
362 * to devices.
363 *
364 * For now, "wmb()" doesn't actually do anything, as all
365 * Intel CPU's follow what Intel calls a *Processor Order*,
366 * in which all writes are seen in the program order even
367 * outside the CPU.
368 *
369 * I expect future Intel CPU's to have a weaker ordering,
370 * but I'd also expect them to finally get their act together
371 * and add some real memory barriers if so.
372 *
373 * Some non intel clones support out of order store. wmb() ceases to be a
374 * nop for these.
375 */
376 
377
378/*
379 * Actually only lfence would be needed for mb() because all stores done
380 * by the kernel should be already ordered. But keep a full barrier for now.
381 */
382
383#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
384#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
385
386/**
387 * read_barrier_depends - Flush all pending reads that subsequents reads
388 * depend on.
389 *
390 * No data-dependent reads from memory-like regions are ever reordered
391 * over this barrier.  All reads preceding this primitive are guaranteed
392 * to access memory (but not necessarily other CPUs' caches) before any
393 * reads following this primitive that depend on the data return by
394 * any of the preceding reads.  This primitive is much lighter weight than
395 * rmb() on most CPUs, and is never heavier weight than is
396 * rmb().
397 *
398 * These ordering constraints are respected by both the local CPU
399 * and the compiler.
400 *
401 * Ordering is not guaranteed by anything other than these primitives,
402 * not even by data dependencies.  See the documentation for
403 * memory_barrier() for examples and URLs to more information.
404 *
405 * For example, the following code would force ordering (the initial
406 * value of "a" is zero, "b" is one, and "p" is "&a"):
407 *
408 * <programlisting>
409 *      CPU 0                           CPU 1
410 *
411 *      b = 2;
412 *      memory_barrier();
413 *      p = &b;                         q = p;
414 *                                      read_barrier_depends();
415 *                                      d = *q;
416 * </programlisting>
417 *
418 * because the read of "*q" depends on the read of "p" and these
419 * two reads are separated by a read_barrier_depends().  However,
420 * the following code, with the same initial values for "a" and "b":
421 *
422 * <programlisting>
423 *      CPU 0                           CPU 1
424 *
425 *      a = 2;
426 *      memory_barrier();
427 *      b = 3;                          y = b;
428 *                                      read_barrier_depends();
429 *                                      x = a;
430 * </programlisting>
431 *
432 * does not enforce ordering, since there is no data dependency between
433 * the read of "a" and the read of "b".  Therefore, on some CPUs, such
434 * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
435 * in cases like this where there are no data dependencies.
436 **/
437
438#define read_barrier_depends()  do { } while(0)
439
440#ifdef CONFIG_X86_OOSTORE
441/* Actually there are no OOO store capable CPUs for now that do SSE,
442   but make it already an possibility. */
443#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
444#else
445#define wmb()   __asm__ __volatile__ ("": : :"memory")
446#endif
447
448#ifdef CONFIG_SMP
449#define smp_mb()        mb()
450#define smp_rmb()       rmb()
451#define smp_wmb()       wmb()
452#define smp_read_barrier_depends()      read_barrier_depends()
453#define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
454#else
455#define smp_mb()        barrier()
456#define smp_rmb()       barrier()
457#define smp_wmb()       barrier()
458#define smp_read_barrier_depends()      do { } while(0)
459#define set_mb(var, value) do { var = value; barrier(); } while (0)
460#endif
461
462#include <linux/irqflags.h>
463
464/*
465 * disable hlt during certain critical i/o operations
466 */
467#define HAVE_DISABLE_HLT
468void disable_hlt(void);
469void enable_hlt(void);
470
471extern int es7000_plat;
472void cpu_idle_wait(void);
473
474/*
475 * On SMP systems, when the scheduler does migration-cost autodetection,
476 * it needs a way to flush as much of the CPU's caches as possible:
477 */
478static inline void sched_cacheflush(void)
479{
480        wbinvd();
481}
482
483extern unsigned long arch_align_stack(unsigned long sp);
484extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
485
486void default_idle(void);
487
488#endif
Note: See TracBrowser for help on using the repository browser.